|
|
import os |
|
|
import json |
|
|
import gradio as gr |
|
|
import pandas as pd |
|
|
from apscheduler.schedulers.background import BackgroundScheduler |
|
|
from huggingface_hub import snapshot_download |
|
|
|
|
|
from src.about import ( |
|
|
CITATION_BUTTON_LABEL, |
|
|
CITATION_BUTTON_TEXT, |
|
|
EVALUATION_QUEUE_TEXT, |
|
|
INTRODUCTION_TEXT, |
|
|
LLM_BENCHMARKS_TEXT, |
|
|
TITLE, |
|
|
) |
|
|
from src.display.css_html_js import custom_css |
|
|
from src.display.utils import ( |
|
|
BENCHMARK_COLS, |
|
|
COLS, |
|
|
EVAL_COLS, |
|
|
EVAL_TYPES, |
|
|
AutoEvalColumn, |
|
|
ModelType, |
|
|
fields, |
|
|
WeightType, |
|
|
Precision, |
|
|
AddSpecialTokens, |
|
|
NumFewShots, |
|
|
NUMERIC_INTERVALS, |
|
|
TYPES, |
|
|
) |
|
|
from src.envs import API, EVAL_REQUESTS_PATH, EVAL_RESULTS_PATH, QUEUE_REPO, REPO_ID, RESULTS_REPO, TOKEN |
|
|
from src.populate import get_evaluation_queue_df, get_leaderboard_df |
|
|
from src.submission.submit import add_new_eval |
|
|
|
|
|
def restart_space(): |
|
|
API.restart_space(repo_id=REPO_ID) |
|
|
|
|
|
|
|
|
try: |
|
|
print(EVAL_REQUESTS_PATH) |
|
|
snapshot_download( |
|
|
repo_id=QUEUE_REPO, local_dir=EVAL_REQUESTS_PATH, repo_type="dataset", tqdm_class=None, etag_timeout=30, token=TOKEN |
|
|
) |
|
|
except Exception: |
|
|
restart_space() |
|
|
try: |
|
|
print(EVAL_RESULTS_PATH) |
|
|
snapshot_download( |
|
|
repo_id=RESULTS_REPO, local_dir=EVAL_RESULTS_PATH, repo_type="dataset", tqdm_class=None, etag_timeout=30, token=TOKEN |
|
|
) |
|
|
except Exception: |
|
|
restart_space() |
|
|
|
|
|
LEADERBOARD_DF = get_leaderboard_df(EVAL_RESULTS_PATH, EVAL_REQUESTS_PATH, COLS, BENCHMARK_COLS) |
|
|
original_df = LEADERBOARD_DF |
|
|
leaderboard_df = original_df.copy() |
|
|
( |
|
|
finished_eval_queue_df, |
|
|
running_eval_queue_df, |
|
|
pending_eval_queue_df, |
|
|
failed_eval_queue_df, |
|
|
) = get_evaluation_queue_df(EVAL_REQUESTS_PATH, EVAL_COLS) |
|
|
|
|
|
|
|
|
def update_table( |
|
|
hidden_df: pd.DataFrame, |
|
|
columns: list, |
|
|
type_query: list, |
|
|
precision_query: str, |
|
|
size_query: list, |
|
|
add_special_tokens_query: list, |
|
|
num_few_shots_query: list, |
|
|
show_deleted: bool, |
|
|
show_merges: bool, |
|
|
show_flagged: bool, |
|
|
query: str, |
|
|
): |
|
|
print(f"Update table called with: type_query={type_query}, precision_query={precision_query}, size_query={size_query}") |
|
|
print(f"hidden_df shape before filtering: {hidden_df.shape}") |
|
|
|
|
|
filtered_df = filter_models(hidden_df, type_query, size_query, precision_query, add_special_tokens_query, num_few_shots_query, show_deleted, show_merges, show_flagged) |
|
|
print(f"filtered_df shape after filter_models: {filtered_df.shape}") |
|
|
|
|
|
filtered_df = filter_queries(query, filtered_df) |
|
|
print(f"filtered_df shape after filter_queries: {filtered_df.shape}") |
|
|
|
|
|
print(f"Filter applied: query={query}, columns={columns}, type_query={type_query}, precision_query={precision_query}") |
|
|
print("Filtered dataframe head:") |
|
|
print(filtered_df.head()) |
|
|
|
|
|
df = select_columns(filtered_df, columns) |
|
|
print(f"Final df shape: {df.shape}") |
|
|
print("Final dataframe head:") |
|
|
print(df.head()) |
|
|
return df |
|
|
|
|
|
|
|
|
def load_query(request: gr.Request): |
|
|
query = request.query_params.get("query") or "" |
|
|
return query, query |
|
|
|
|
|
|
|
|
def search_table(df: pd.DataFrame, query: str) -> pd.DataFrame: |
|
|
return df[(df[AutoEvalColumn.dummy.name].str.contains(query, case=False))] |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
def select_columns(df: pd.DataFrame, columns: list) -> pd.DataFrame: |
|
|
always_here_cols = [ |
|
|
AutoEvalColumn.model_type_symbol.name, |
|
|
AutoEvalColumn.model.name, |
|
|
] |
|
|
|
|
|
|
|
|
columns = [c for c in columns if c not in always_here_cols] |
|
|
new_columns = always_here_cols + [c for c in COLS if c in df.columns and c in columns] |
|
|
|
|
|
|
|
|
seen = set() |
|
|
unique_columns = [] |
|
|
for c in new_columns: |
|
|
if c not in seen: |
|
|
unique_columns.append(c) |
|
|
seen.add(c) |
|
|
|
|
|
|
|
|
if 'Model' in df.columns: |
|
|
df['Model'] = df['Model'].apply(lambda x: f'[{x.split(">")[-2].split("<")[0]}]({x.split("href=")[1].split(chr(34))[1]})' if isinstance(x, str) and 'href=' in x else x) |
|
|
|
|
|
|
|
|
filtered_df = df[unique_columns] |
|
|
return filtered_df |
|
|
|
|
|
|
|
|
def filter_queries(query: str, filtered_df: pd.DataFrame): |
|
|
"""Added by Abishek""" |
|
|
final_df = [] |
|
|
if query != "": |
|
|
queries = [q.strip() for q in query.split(";")] |
|
|
for _q in queries: |
|
|
_q = _q.strip() |
|
|
if _q != "": |
|
|
temp_filtered_df = search_table(filtered_df, _q) |
|
|
if len(temp_filtered_df) > 0: |
|
|
final_df.append(temp_filtered_df) |
|
|
if len(final_df) > 0: |
|
|
filtered_df = pd.concat(final_df) |
|
|
filtered_df = filtered_df.drop_duplicates( |
|
|
subset=[AutoEvalColumn.model.name, AutoEvalColumn.precision.name, AutoEvalColumn.revision.name] |
|
|
) |
|
|
|
|
|
return filtered_df |
|
|
|
|
|
|
|
|
def filter_models( |
|
|
df: pd.DataFrame, type_query: list, size_query: list, precision_query: list, add_special_tokens_query: list, num_few_shots_query: list, show_deleted: bool, show_merges: bool, show_flagged: bool |
|
|
) -> pd.DataFrame: |
|
|
print(f"Initial df shape: {df.shape}") |
|
|
print(f"Initial df content:\n{df}") |
|
|
|
|
|
filtered_df = df |
|
|
|
|
|
|
|
|
type_column = 'T' if 'T' in df.columns else 'Type_' |
|
|
type_emoji = [t.split()[0] for t in type_query] |
|
|
filtered_df = df[df[type_column].isin(type_emoji)] |
|
|
print(f"After type filter: {filtered_df.shape}") |
|
|
|
|
|
|
|
|
filtered_df = filtered_df[filtered_df['Precision'].isin(precision_query + ['Unknown', '?'])] |
|
|
print(f"After precision filter: {filtered_df.shape}") |
|
|
|
|
|
|
|
|
if 'Unknown' in size_query: |
|
|
size_mask = filtered_df['#Params (B)'].isna() | (filtered_df['#Params (B)'] == 0) |
|
|
else: |
|
|
size_mask = filtered_df['#Params (B)'].apply(lambda x: any(x in NUMERIC_INTERVALS[s] for s in size_query if s != 'Unknown')) |
|
|
filtered_df = filtered_df[size_mask] |
|
|
print(f"After size filter: {filtered_df.shape}") |
|
|
|
|
|
|
|
|
filtered_df = filtered_df[filtered_df['Add Special Tokens'].isin(add_special_tokens_query + ['Unknown', '?'])] |
|
|
print(f"After add_special_tokens filter: {filtered_df.shape}") |
|
|
|
|
|
|
|
|
filtered_df = filtered_df[filtered_df['Few-shot'].astype(str).isin([str(x) for x in num_few_shots_query] + ['Unknown', '?'])] |
|
|
print(f"After num_few_shots filter: {filtered_df.shape}") |
|
|
|
|
|
|
|
|
if not show_deleted: |
|
|
filtered_df = filtered_df[filtered_df['Available on the hub'] == True] |
|
|
print(f"After show_deleted filter: {filtered_df.shape}") |
|
|
|
|
|
print("Filtered dataframe head:") |
|
|
print(filtered_df.head()) |
|
|
return filtered_df |
|
|
|
|
|
leaderboard_df = filter_models(leaderboard_df, [t.to_str(" : ") for t in ModelType], list(NUMERIC_INTERVALS.keys()), [i.value.name for i in Precision], [i.value.name for i in AddSpecialTokens], [i.value.name for i in NumFewShots], False, False, False) |
|
|
|
|
|
demo = gr.Blocks(css=custom_css) |
|
|
with demo: |
|
|
gr.HTML(TITLE) |
|
|
gr.Markdown(INTRODUCTION_TEXT, elem_classes="markdown-text") |
|
|
|
|
|
with gr.Tabs(elem_classes="tab-buttons") as tabs: |
|
|
with gr.TabItem("🏅 LLM Benchmark", elem_id="llm-benchmark-tab-table", id=0): |
|
|
with gr.Row(): |
|
|
with gr.Column(): |
|
|
with gr.Row(): |
|
|
search_bar = gr.Textbox( |
|
|
placeholder=" 🔍 Search for your model (separate multiple queries with `;`) and press ENTER...", |
|
|
show_label=False, |
|
|
elem_id="search-bar", |
|
|
) |
|
|
with gr.Row(): |
|
|
shown_columns = gr.CheckboxGroup( |
|
|
choices=[ |
|
|
c.name |
|
|
for c in fields(AutoEvalColumn) |
|
|
if not c.hidden and not c.never_hidden |
|
|
], |
|
|
value=[ |
|
|
c.name |
|
|
for c in fields(AutoEvalColumn) |
|
|
if c.displayed_by_default and not c.hidden and not c.never_hidden |
|
|
], |
|
|
label="Select columns to show", |
|
|
elem_id="column-select", |
|
|
interactive=True, |
|
|
) |
|
|
with gr.Row(): |
|
|
deleted_models_visibility = gr.Checkbox( |
|
|
value=False, label="Show private/deleted models", interactive=True |
|
|
) |
|
|
merged_models_visibility = gr.Checkbox( |
|
|
value=False, label="Show merges", interactive=True |
|
|
) |
|
|
flagged_models_visibility = gr.Checkbox( |
|
|
value=False, label="Show flagged models", interactive=True |
|
|
) |
|
|
with gr.Column(min_width=320): |
|
|
|
|
|
filter_columns_type = gr.CheckboxGroup( |
|
|
label="Model types", |
|
|
choices=[t.to_str() for t in ModelType], |
|
|
value=[t.to_str() for t in ModelType], |
|
|
interactive=True, |
|
|
elem_id="filter-columns-type", |
|
|
) |
|
|
filter_columns_precision = gr.CheckboxGroup( |
|
|
label="Precision", |
|
|
choices=[i.value.name for i in Precision], |
|
|
value=[i.value.name for i in Precision], |
|
|
interactive=True, |
|
|
elem_id="filter-columns-precision", |
|
|
) |
|
|
filter_columns_size = gr.CheckboxGroup( |
|
|
label="Model sizes (in billions of parameters)", |
|
|
choices=list(NUMERIC_INTERVALS.keys()), |
|
|
value=list(NUMERIC_INTERVALS.keys()), |
|
|
interactive=True, |
|
|
elem_id="filter-columns-size", |
|
|
) |
|
|
filter_columns_add_special_tokens = gr.CheckboxGroup( |
|
|
label="Add Special Tokens", |
|
|
choices=[i.value.name for i in AddSpecialTokens], |
|
|
value=[i.value.name for i in AddSpecialTokens], |
|
|
interactive=True, |
|
|
elem_id="filter-columns-add-special-tokens", |
|
|
) |
|
|
filter_columns_num_few_shots = gr.CheckboxGroup( |
|
|
label="Num Few Shots", |
|
|
choices=[i.value.name for i in NumFewShots], |
|
|
value=[i.value.name for i in NumFewShots], |
|
|
interactive=True, |
|
|
elem_id="filter-columns-num-few-shots", |
|
|
) |
|
|
|
|
|
leaderboard_df_filtered = filter_models(leaderboard_df, [t.to_str(" : ") for t in ModelType], list(NUMERIC_INTERVALS.keys()), [i.value.name for i in Precision], [i.value.name for i in AddSpecialTokens], [i.value.name for i in NumFewShots], False, False, False) |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
initial_columns = ['T'] + [c.name for c in fields(AutoEvalColumn) if (c.never_hidden or c.displayed_by_default) and c.name != 'T'] |
|
|
leaderboard_df_filtered = select_columns(leaderboard_df, initial_columns) |
|
|
|
|
|
|
|
|
leaderboard_df_filtered['Model'] = leaderboard_df_filtered['Model'].apply( |
|
|
lambda x: f'[{x.split(">")[-2].split("<")[0]}]({x.split("href=")[1].split(chr(34))[1]})' if isinstance(x, str) and 'href=' in x else x |
|
|
) |
|
|
|
|
|
|
|
|
for col in leaderboard_df_filtered.columns: |
|
|
if col not in ['T', 'Model']: |
|
|
leaderboard_df_filtered[col] = leaderboard_df_filtered[col].astype(str) |
|
|
|
|
|
|
|
|
leaderboard_table = gr.components.Dataframe( |
|
|
value=leaderboard_df_filtered, |
|
|
headers=initial_columns, |
|
|
datatype=TYPES, |
|
|
elem_id="leaderboard-table", |
|
|
interactive=False, |
|
|
visible=True |
|
|
) |
|
|
|
|
|
|
|
|
hidden_leaderboard_table_for_search = gr.components.Dataframe( |
|
|
value=original_df[COLS], |
|
|
headers=COLS, |
|
|
datatype=TYPES, |
|
|
visible=False, |
|
|
) |
|
|
search_bar.submit( |
|
|
update_table, |
|
|
[ |
|
|
hidden_leaderboard_table_for_search, |
|
|
shown_columns, |
|
|
filter_columns_type, |
|
|
filter_columns_precision, |
|
|
filter_columns_size, |
|
|
filter_columns_add_special_tokens, |
|
|
filter_columns_num_few_shots, |
|
|
deleted_models_visibility, |
|
|
merged_models_visibility, |
|
|
flagged_models_visibility, |
|
|
search_bar, |
|
|
], |
|
|
leaderboard_table, |
|
|
) |
|
|
|
|
|
|
|
|
hidden_search_bar = gr.Textbox(value="", visible=False) |
|
|
hidden_search_bar.change( |
|
|
update_table, |
|
|
[ |
|
|
hidden_leaderboard_table_for_search, |
|
|
shown_columns, |
|
|
filter_columns_type, |
|
|
filter_columns_precision, |
|
|
filter_columns_size, |
|
|
filter_columns_add_special_tokens, |
|
|
filter_columns_num_few_shots, |
|
|
deleted_models_visibility, |
|
|
merged_models_visibility, |
|
|
flagged_models_visibility, |
|
|
search_bar, |
|
|
], |
|
|
leaderboard_table, |
|
|
) |
|
|
|
|
|
demo.load(load_query, inputs=[], outputs=[search_bar, hidden_search_bar]) |
|
|
|
|
|
for selector in [shown_columns, filter_columns_type, filter_columns_precision, filter_columns_size, filter_columns_add_special_tokens, filter_columns_num_few_shots, deleted_models_visibility, merged_models_visibility, flagged_models_visibility]: |
|
|
selector.change( |
|
|
update_table, |
|
|
[ |
|
|
hidden_leaderboard_table_for_search, |
|
|
shown_columns, |
|
|
filter_columns_type, |
|
|
filter_columns_precision, |
|
|
filter_columns_size, |
|
|
filter_columns_add_special_tokens, |
|
|
filter_columns_num_few_shots, |
|
|
deleted_models_visibility, |
|
|
merged_models_visibility, |
|
|
flagged_models_visibility, |
|
|
search_bar, |
|
|
], |
|
|
leaderboard_table, |
|
|
queue=True, |
|
|
) |
|
|
|
|
|
with gr.TabItem("📝 About", elem_id="llm-benchmark-tab-table", id=2): |
|
|
gr.Markdown(LLM_BENCHMARKS_TEXT, elem_classes="markdown-text") |
|
|
|
|
|
with gr.TabItem("🚀 Submit here! ", elem_id="llm-benchmark-tab-table", id=3): |
|
|
with gr.Column(): |
|
|
with gr.Row(): |
|
|
gr.Markdown(EVALUATION_QUEUE_TEXT, elem_classes="markdown-text") |
|
|
|
|
|
with gr.Column(): |
|
|
with gr.Accordion( |
|
|
f"✅ Finished Evaluations ({len(finished_eval_queue_df)})", |
|
|
open=False, |
|
|
): |
|
|
with gr.Row(): |
|
|
finished_eval_table = gr.components.Dataframe( |
|
|
value=finished_eval_queue_df, |
|
|
headers=EVAL_COLS, |
|
|
datatype=EVAL_TYPES, |
|
|
row_count=5, |
|
|
) |
|
|
with gr.Accordion( |
|
|
f"🔄 Running Evaluation Queue ({len(running_eval_queue_df)})", |
|
|
open=False, |
|
|
): |
|
|
with gr.Row(): |
|
|
running_eval_table = gr.components.Dataframe( |
|
|
value=running_eval_queue_df, |
|
|
headers=EVAL_COLS, |
|
|
datatype=EVAL_TYPES, |
|
|
row_count=5, |
|
|
) |
|
|
|
|
|
with gr.Accordion( |
|
|
f"⏳ Pending Evaluation Queue ({len(pending_eval_queue_df)})", |
|
|
open=False, |
|
|
): |
|
|
with gr.Row(): |
|
|
pending_eval_table = gr.components.Dataframe( |
|
|
value=pending_eval_queue_df, |
|
|
headers=EVAL_COLS, |
|
|
datatype=EVAL_TYPES, |
|
|
row_count=5, |
|
|
) |
|
|
with gr.Accordion( |
|
|
f"❎ Failed Evaluation Queue ({len(failed_eval_queue_df)})", |
|
|
open=False, |
|
|
): |
|
|
with gr.Row(): |
|
|
failed_eval_table = gr.components.Dataframe( |
|
|
value=failed_eval_queue_df, |
|
|
headers=EVAL_COLS, |
|
|
datatype=EVAL_TYPES, |
|
|
row_count=5, |
|
|
) |
|
|
with gr.Row(): |
|
|
gr.Markdown("# ✉️✨ Submit your model here!", elem_classes="markdown-text") |
|
|
|
|
|
with gr.Row(): |
|
|
with gr.Column(): |
|
|
model_name_textbox = gr.Textbox(label="Model name") |
|
|
revision_name_textbox = gr.Textbox(label="Revision commit", placeholder="main") |
|
|
model_type = gr.Dropdown( |
|
|
choices=[t.to_str(" : ") for t in ModelType if t != ModelType.Unknown], |
|
|
label="Model type", |
|
|
multiselect=False, |
|
|
value=None, |
|
|
interactive=True, |
|
|
) |
|
|
|
|
|
with gr.Column(): |
|
|
precision = gr.Dropdown( |
|
|
choices=[i.value.name for i in Precision if i != Precision.Unknown], |
|
|
label="Precision", |
|
|
multiselect=False, |
|
|
value="float16", |
|
|
interactive=True, |
|
|
) |
|
|
weight_type = gr.Dropdown( |
|
|
choices=[i.value.name for i in WeightType], |
|
|
label="Weights type", |
|
|
multiselect=False, |
|
|
value="Original", |
|
|
interactive=True, |
|
|
) |
|
|
base_model_name_textbox = gr.Textbox(label="Base model (for delta or adapter weights)") |
|
|
add_special_tokens = gr.Dropdown( |
|
|
choices=[i.value.name for i in AddSpecialTokens if i != AddSpecialTokens.Unknown], |
|
|
label="AddSpecialTokens", |
|
|
multiselect=False, |
|
|
value="False", |
|
|
interactive=True, |
|
|
) |
|
|
|
|
|
submit_button = gr.Button("Submit Eval") |
|
|
submission_result = gr.Markdown() |
|
|
submit_button.click( |
|
|
add_new_eval, |
|
|
[ |
|
|
model_name_textbox, |
|
|
base_model_name_textbox, |
|
|
revision_name_textbox, |
|
|
precision, |
|
|
weight_type, |
|
|
model_type, |
|
|
add_special_tokens, |
|
|
], |
|
|
submission_result, |
|
|
) |
|
|
|
|
|
with gr.Row(): |
|
|
with gr.Accordion("📙 Citation", open=False): |
|
|
citation_button = gr.Textbox( |
|
|
value=CITATION_BUTTON_TEXT, |
|
|
label=CITATION_BUTTON_LABEL, |
|
|
lines=20, |
|
|
elem_id="citation-button", |
|
|
show_copy_button=True, |
|
|
) |
|
|
|
|
|
scheduler = BackgroundScheduler() |
|
|
scheduler.add_job(restart_space, "interval", seconds=1800) |
|
|
scheduler.start() |
|
|
demo.queue(default_concurrency_limit=40).launch() |