Spaces:
Running
on
CPU Upgrade
Running
on
CPU Upgrade
Update app.py
Browse files
app.py
CHANGED
@@ -53,9 +53,7 @@ except Exception:
|
|
53 |
restart_space()
|
54 |
|
55 |
LEADERBOARD_DF = get_leaderboard_df(EVAL_RESULTS_PATH, EVAL_REQUESTS_PATH, COLS, BENCHMARK_COLS)
|
56 |
-
print("Initial LEADERBOARD_DF:")
|
57 |
print(LEADERBOARD_DF.head())
|
58 |
-
print(f"LEADERBOARD_DF shape: {LEADERBOARD_DF.shape}")
|
59 |
original_df = LEADERBOARD_DF
|
60 |
leaderboard_df = original_df.copy()
|
61 |
(
|
@@ -79,23 +77,12 @@ def update_table(
|
|
79 |
show_flagged: bool,
|
80 |
query: str,
|
81 |
):
|
82 |
-
print(f"Update table called with: type_query={type_query}, precision_query={precision_query}, size_query={size_query}")
|
83 |
-
print(f"hidden_df shape before filtering: {hidden_df.shape}")
|
84 |
|
85 |
filtered_df = filter_models(hidden_df, type_query, size_query, precision_query, add_special_tokens_query, num_few_shots_query, show_deleted, show_merges, show_flagged)
|
86 |
-
print(f"filtered_df shape after filter_models: {filtered_df.shape}")
|
87 |
|
88 |
filtered_df = filter_queries(query, filtered_df)
|
89 |
-
print(f"filtered_df shape after filter_queries: {filtered_df.shape}")
|
90 |
-
|
91 |
-
print(f"Filter applied: query={query}, columns={columns}, type_query={type_query}, precision_query={precision_query}")
|
92 |
-
print("Filtered dataframe head:")
|
93 |
-
print(filtered_df.head())
|
94 |
|
95 |
df = select_columns(filtered_df, columns)
|
96 |
-
print(f"Final df shape: {df.shape}")
|
97 |
-
print("Final dataframe head:")
|
98 |
-
print(df.head())
|
99 |
return df
|
100 |
|
101 |
|
@@ -162,8 +149,8 @@ def filter_models(
|
|
162 |
|
163 |
type_emoji = [t[0] for t in type_query]
|
164 |
filtered_df = filtered_df.loc[df[AutoEvalColumn.model_type_symbol.name].isin(type_emoji)]
|
165 |
-
print(f"
|
166 |
-
filtered_df = filtered_df.loc[
|
167 |
print(f"After precision filter: {filtered_df.shape}")
|
168 |
filtered_df = filtered_df.loc[df[AutoEvalColumn.add_special_tokens.name].isin(add_special_tokens_query)]
|
169 |
print(f"After add_special_tokens filter: {filtered_df.shape}")
|
@@ -261,22 +248,37 @@ with demo:
|
|
261 |
elem_id="filter-columns-num-few-shots",
|
262 |
)
|
263 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
264 |
leaderboard_table = gr.components.Dataframe(
|
265 |
-
value=
|
266 |
-
[c.name for c in fields(AutoEvalColumn) if c.never_hidden]
|
267 |
-
+ shown_columns.value
|
268 |
-
# + [AutoEvalColumn.dummy.name]
|
269 |
-
],
|
270 |
headers=[c.name for c in fields(AutoEvalColumn) if c.never_hidden] + shown_columns.value,
|
271 |
datatype=TYPES,
|
272 |
elem_id="leaderboard-table",
|
273 |
interactive=False,
|
274 |
visible=True,
|
275 |
-
#column_widths=["2%", "33%"]
|
276 |
)
|
|
|
|
|
|
|
277 |
print("Leaderboard table initial value:")
|
278 |
-
print(
|
279 |
-
print(f"Leaderboard table shape: {leaderboard_table.value.shape}")
|
280 |
|
281 |
# Dummy leaderboard for handling the case when the user uses backspace key
|
282 |
hidden_leaderboard_table_for_search = gr.components.Dataframe(
|
|
|
53 |
restart_space()
|
54 |
|
55 |
LEADERBOARD_DF = get_leaderboard_df(EVAL_RESULTS_PATH, EVAL_REQUESTS_PATH, COLS, BENCHMARK_COLS)
|
|
|
56 |
print(LEADERBOARD_DF.head())
|
|
|
57 |
original_df = LEADERBOARD_DF
|
58 |
leaderboard_df = original_df.copy()
|
59 |
(
|
|
|
77 |
show_flagged: bool,
|
78 |
query: str,
|
79 |
):
|
|
|
|
|
80 |
|
81 |
filtered_df = filter_models(hidden_df, type_query, size_query, precision_query, add_special_tokens_query, num_few_shots_query, show_deleted, show_merges, show_flagged)
|
|
|
82 |
|
83 |
filtered_df = filter_queries(query, filtered_df)
|
|
|
|
|
|
|
|
|
|
|
84 |
|
85 |
df = select_columns(filtered_df, columns)
|
|
|
|
|
|
|
86 |
return df
|
87 |
|
88 |
|
|
|
149 |
|
150 |
type_emoji = [t[0] for t in type_query]
|
151 |
filtered_df = filtered_df.loc[df[AutoEvalColumn.model_type_symbol.name].isin(type_emoji)]
|
152 |
+
print(f"Unique values in precision column: {filtered_df[AutoEvalColumn.precision.name].unique()}")
|
153 |
+
filtered_df = filtered_df.loc[filtered_df[AutoEvalColumn.precision.name].isin(precision_query + ["None"])]
|
154 |
print(f"After precision filter: {filtered_df.shape}")
|
155 |
filtered_df = filtered_df.loc[df[AutoEvalColumn.add_special_tokens.name].isin(add_special_tokens_query)]
|
156 |
print(f"After add_special_tokens filter: {filtered_df.shape}")
|
|
|
248 |
elem_id="filter-columns-num-few-shots",
|
249 |
)
|
250 |
|
251 |
+
# leaderboard_table = gr.components.Dataframe(
|
252 |
+
# value=leaderboard_df[
|
253 |
+
# [c.name for c in fields(AutoEvalColumn) if c.never_hidden]
|
254 |
+
# + shown_columns.value
|
255 |
+
# # + [AutoEvalColumn.dummy.name]
|
256 |
+
# ],
|
257 |
+
# headers=[c.name for c in fields(AutoEvalColumn) if c.never_hidden] + shown_columns.value,
|
258 |
+
# datatype=TYPES,
|
259 |
+
# elem_id="leaderboard-table",
|
260 |
+
# interactive=False,
|
261 |
+
# visible=True,
|
262 |
+
# #column_widths=["2%", "33%"]
|
263 |
+
# )
|
264 |
+
initial_data = leaderboard_df[
|
265 |
+
[c.name for c in fields(AutoEvalColumn) if c.never_hidden]
|
266 |
+
+ shown_columns.value
|
267 |
+
].to_dict('records')
|
268 |
+
|
269 |
leaderboard_table = gr.components.Dataframe(
|
270 |
+
value=initial_data,
|
|
|
|
|
|
|
|
|
271 |
headers=[c.name for c in fields(AutoEvalColumn) if c.never_hidden] + shown_columns.value,
|
272 |
datatype=TYPES,
|
273 |
elem_id="leaderboard-table",
|
274 |
interactive=False,
|
275 |
visible=True,
|
|
|
276 |
)
|
277 |
+
# print("Leaderboard table initial value:")
|
278 |
+
# print(leaderboard_table.value.head())
|
279 |
+
# print(f"Leaderboard table shape: {leaderboard_table.value.shape}")
|
280 |
print("Leaderboard table initial value:")
|
281 |
+
print(initial_data[:5] if initial_data else "Empty")
|
|
|
282 |
|
283 |
# Dummy leaderboard for handling the case when the user uses backspace key
|
284 |
hidden_leaderboard_table_for_search = gr.components.Dataframe(
|