Spaces:
Running
on
CPU Upgrade
Running
on
CPU Upgrade
Update app.py
Browse files
app.py
CHANGED
|
@@ -55,9 +55,6 @@ except Exception:
|
|
| 55 |
LEADERBOARD_DF = get_leaderboard_df(EVAL_RESULTS_PATH, EVAL_REQUESTS_PATH, COLS, BENCHMARK_COLS)
|
| 56 |
original_df = LEADERBOARD_DF
|
| 57 |
leaderboard_df = original_df.copy()
|
| 58 |
-
print("Columns in COLS:", COLS)
|
| 59 |
-
print("Columns in leaderboard_df:", leaderboard_df.columns.tolist())
|
| 60 |
-
print("Data types:", leaderboard_df.dtypes.to_dict())
|
| 61 |
(
|
| 62 |
finished_eval_queue_df,
|
| 63 |
running_eval_queue_df,
|
|
@@ -132,20 +129,12 @@ def filter_queries(query: str, filtered_df: pd.DataFrame):
|
|
| 132 |
def filter_models(
|
| 133 |
df: pd.DataFrame, type_query: list, size_query: list, precision_query: list, add_special_tokens_query: list, num_few_shots_query: list, show_deleted: bool, show_merges: bool, show_flagged: bool
|
| 134 |
) -> pd.DataFrame:
|
| 135 |
-
# filter_models関数の冒頭で
|
| 136 |
-
if 'T' in df.columns:
|
| 137 |
-
df = df.rename(columns={'T': 'Type_Symbol'})
|
| 138 |
-
elif 'Type_Symbol' not in df.columns:
|
| 139 |
-
df['Type_Symbol'] = '?'
|
| 140 |
-
|
| 141 |
# Show all models
|
| 142 |
if show_deleted:
|
| 143 |
filtered_df = df
|
| 144 |
else: # Show only still on the hub models
|
| 145 |
filtered_df = df[df[AutoEvalColumn.still_on_hub.name] == True]
|
| 146 |
|
| 147 |
-
print(f"After deletion filter: {filtered_df.shape}")
|
| 148 |
-
|
| 149 |
#if not show_merges:
|
| 150 |
# filtered_df = filtered_df[filtered_df[AutoEvalColumn.merged.name] == False]
|
| 151 |
|
|
@@ -153,36 +142,16 @@ def filter_models(
|
|
| 153 |
# filtered_df = filtered_df[filtered_df[AutoEvalColumn.flagged.name] == False]
|
| 154 |
|
| 155 |
type_emoji = [t[0] for t in type_query]
|
| 156 |
-
|
| 157 |
-
filtered_df = filtered_df[
|
| 158 |
-
|
| 159 |
-
|
| 160 |
-
filtered_df = filtered_df[filtered_df[AutoEvalColumn.precision.name].isin(precision_query + ['Unknown'])]
|
| 161 |
-
|
| 162 |
-
# add_special_tokensフィルタリングを条件付きで適用
|
| 163 |
-
filtered_df = filtered_df[filtered_df[AutoEvalColumn.add_special_tokens.name].isin(add_special_tokens_query + ['Unknown'])]
|
| 164 |
-
|
| 165 |
-
# num_few_shotsフィルタリングを条件付きで適用
|
| 166 |
-
filtered_df = filtered_df[filtered_df[AutoEvalColumn.num_few_shots.name].isin(num_few_shots_query + ['Unknown'])]
|
| 167 |
-
print(f"After num_few_shots filter: {filtered_df.shape}")
|
| 168 |
|
| 169 |
|
| 170 |
numeric_interval = pd.IntervalIndex(sorted([NUMERIC_INTERVALS[s] for s in size_query]))
|
| 171 |
params_column = pd.to_numeric(df[AutoEvalColumn.params.name], errors="coerce")
|
| 172 |
mask = params_column.apply(lambda x: any(numeric_interval.contains(x)))
|
| 173 |
filtered_df = filtered_df.loc[mask]
|
| 174 |
-
print(f"After size filter: {filtered_df.shape}")
|
| 175 |
-
print("Filtered dataframe head:")
|
| 176 |
-
print(filtered_df.head())
|
| 177 |
-
print("Column names:")
|
| 178 |
-
print(filtered_df.columns.tolist())
|
| 179 |
-
print("Column data types:")
|
| 180 |
-
print(filtered_df.dtypes)
|
| 181 |
-
filtered_df = filtered_df.rename(columns={'T': 'Type_Symbol'})
|
| 182 |
-
print("Final filtered dataframe columns:")
|
| 183 |
-
print(filtered_df.columns.tolist())
|
| 184 |
-
print("Final filtered dataframe sample:")
|
| 185 |
-
print(filtered_df.head().to_dict('records'))
|
| 186 |
return filtered_df
|
| 187 |
|
| 188 |
leaderboard_df = filter_models(leaderboard_df, [t.to_str(" : ") for t in ModelType], list(NUMERIC_INTERVALS.keys()), [i.value.name for i in Precision], [i.value.name for i in AddSpecialTokens], [i.value.name for i in NumFewShots], False, False, False)
|
|
@@ -268,13 +237,16 @@ with demo:
|
|
| 268 |
|
| 269 |
leaderboard_table = gr.components.Dataframe(
|
| 270 |
value=leaderboard_df[
|
| 271 |
-
[c for c in
|
|
|
|
|
|
|
| 272 |
],
|
| 273 |
-
headers=[c for c in
|
| 274 |
-
datatype=
|
| 275 |
elem_id="leaderboard-table",
|
| 276 |
interactive=False,
|
| 277 |
visible=True,
|
|
|
|
| 278 |
)
|
| 279 |
print(leaderboard_df.head()) # リーダーボードテーブルに渡される前のデータを確認
|
| 280 |
|
|
|
|
| 55 |
LEADERBOARD_DF = get_leaderboard_df(EVAL_RESULTS_PATH, EVAL_REQUESTS_PATH, COLS, BENCHMARK_COLS)
|
| 56 |
original_df = LEADERBOARD_DF
|
| 57 |
leaderboard_df = original_df.copy()
|
|
|
|
|
|
|
|
|
|
| 58 |
(
|
| 59 |
finished_eval_queue_df,
|
| 60 |
running_eval_queue_df,
|
|
|
|
| 129 |
def filter_models(
|
| 130 |
df: pd.DataFrame, type_query: list, size_query: list, precision_query: list, add_special_tokens_query: list, num_few_shots_query: list, show_deleted: bool, show_merges: bool, show_flagged: bool
|
| 131 |
) -> pd.DataFrame:
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 132 |
# Show all models
|
| 133 |
if show_deleted:
|
| 134 |
filtered_df = df
|
| 135 |
else: # Show only still on the hub models
|
| 136 |
filtered_df = df[df[AutoEvalColumn.still_on_hub.name] == True]
|
| 137 |
|
|
|
|
|
|
|
| 138 |
#if not show_merges:
|
| 139 |
# filtered_df = filtered_df[filtered_df[AutoEvalColumn.merged.name] == False]
|
| 140 |
|
|
|
|
| 142 |
# filtered_df = filtered_df[filtered_df[AutoEvalColumn.flagged.name] == False]
|
| 143 |
|
| 144 |
type_emoji = [t[0] for t in type_query]
|
| 145 |
+
filtered_df = filtered_df.loc[df[AutoEvalColumn.model_type_symbol.name].isin(type_emoji)]
|
| 146 |
+
filtered_df = filtered_df.loc[df[AutoEvalColumn.precision.name].isin(precision_query + ["None"])]
|
| 147 |
+
filtered_df = filtered_df.loc[df[AutoEvalColumn.add_special_tokens.name].isin(add_special_tokens_query)]
|
| 148 |
+
filtered_df = filtered_df.loc[df[AutoEvalColumn.num_few_shots.name].isin(num_few_shots_query)]
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 149 |
|
| 150 |
|
| 151 |
numeric_interval = pd.IntervalIndex(sorted([NUMERIC_INTERVALS[s] for s in size_query]))
|
| 152 |
params_column = pd.to_numeric(df[AutoEvalColumn.params.name], errors="coerce")
|
| 153 |
mask = params_column.apply(lambda x: any(numeric_interval.contains(x)))
|
| 154 |
filtered_df = filtered_df.loc[mask]
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 155 |
return filtered_df
|
| 156 |
|
| 157 |
leaderboard_df = filter_models(leaderboard_df, [t.to_str(" : ") for t in ModelType], list(NUMERIC_INTERVALS.keys()), [i.value.name for i in Precision], [i.value.name for i in AddSpecialTokens], [i.value.name for i in NumFewShots], False, False, False)
|
|
|
|
| 237 |
|
| 238 |
leaderboard_table = gr.components.Dataframe(
|
| 239 |
value=leaderboard_df[
|
| 240 |
+
[c.name for c in fields(AutoEvalColumn) if c.never_hidden]
|
| 241 |
+
+ shown_columns.value
|
| 242 |
+
# + [AutoEvalColumn.dummy.name]
|
| 243 |
],
|
| 244 |
+
headers=[c.name for c in fields(AutoEvalColumn) if c.never_hidden] + shown_columns.value,
|
| 245 |
+
datatype=TYPES,
|
| 246 |
elem_id="leaderboard-table",
|
| 247 |
interactive=False,
|
| 248 |
visible=True,
|
| 249 |
+
#column_widths=["2%", "33%"]
|
| 250 |
)
|
| 251 |
print(leaderboard_df.head()) # リーダーボードテーブルに渡される前のデータを確認
|
| 252 |
|