sh1gechan commited on
Commit
bebdc06
·
verified ·
1 Parent(s): 2d27218

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +65 -19
app.py CHANGED
@@ -53,6 +53,11 @@ except Exception:
53
  restart_space()
54
 
55
  LEADERBOARD_DF = get_leaderboard_df(EVAL_RESULTS_PATH, EVAL_REQUESTS_PATH, COLS, BENCHMARK_COLS)
 
 
 
 
 
56
  original_df = LEADERBOARD_DF
57
  leaderboard_df = original_df.copy()
58
  (
@@ -76,15 +81,25 @@ def update_table(
76
  show_flagged: bool,
77
  query: str,
78
  ):
79
- filtered_df = filter_models(hidden_df, type_query, size_query, precision_query, add_special_tokens_query, num_few_shots_query, show_deleted, show_merges, show_flagged)
 
 
 
 
80
  filtered_df = filter_queries(query, filtered_df)
 
81
  print(f"Filter applied: query={query}, columns={columns}, type_query={type_query}, precision_query={precision_query}")
 
82
  print(filtered_df.head()) # フィルタ後のデータを確認
83
-
84
  df = select_columns(filtered_df, columns)
 
 
 
85
  return df
86
 
87
 
 
88
  def load_query(request: gr.Request): # triggered only once at startup => read query parameter if it exists
89
  query = request.query_params.get("query") or ""
90
  return query, query # return one for the "search_bar", one for a hidden component that triggers a reload only if value has changed
@@ -127,33 +142,64 @@ def filter_queries(query: str, filtered_df: pd.DataFrame):
127
 
128
 
129
  def filter_models(
130
- df: pd.DataFrame, type_query: list, size_query: list, precision_query: list, add_special_tokens_query: list, num_few_shots_query: list, show_deleted: bool, show_merges: bool, show_flagged: bool
 
 
 
 
 
 
 
 
131
  ) -> pd.DataFrame:
132
- # Show all models
 
 
 
133
  if show_deleted:
134
  filtered_df = df
135
- else: # Show only still on the hub models
 
136
  filtered_df = df[df[AutoEvalColumn.still_on_hub.name] == True]
137
-
138
- #if not show_merges:
139
- # filtered_df = filtered_df[filtered_df[AutoEvalColumn.merged.name] == False]
140
-
141
- #if not show_flagged:
142
- # filtered_df = filtered_df[filtered_df[AutoEvalColumn.flagged.name] == False]
143
-
 
 
 
 
 
 
144
  type_emoji = [t[0] for t in type_query]
145
- filtered_df = filtered_df.loc[df[AutoEvalColumn.model_type_symbol.name].isin(type_emoji)]
146
- filtered_df = filtered_df.loc[df[AutoEvalColumn.precision.name].isin(precision_query + ["None"])]
147
- filtered_df = filtered_df.loc[df[AutoEvalColumn.add_special_tokens.name].isin(add_special_tokens_query)]
148
- filtered_df = filtered_df.loc[df[AutoEvalColumn.num_few_shots.name].isin(num_few_shots_query)]
149
 
150
-
 
 
 
 
 
 
 
 
 
 
 
 
151
  numeric_interval = pd.IntervalIndex(sorted([NUMERIC_INTERVALS[s] for s in size_query]))
152
- params_column = pd.to_numeric(df[AutoEvalColumn.params.name], errors="coerce")
153
  mask = params_column.apply(lambda x: any(numeric_interval.contains(x)))
154
- filtered_df = filtered_df.loc[mask]
 
 
155
  return filtered_df
156
 
 
157
  leaderboard_df = filter_models(leaderboard_df, [t.to_str(" : ") for t in ModelType], list(NUMERIC_INTERVALS.keys()), [i.value.name for i in Precision], [i.value.name for i in AddSpecialTokens], [i.value.name for i in NumFewShots], False, False, False)
158
 
159
  demo = gr.Blocks(css=custom_css)
 
53
  restart_space()
54
 
55
  LEADERBOARD_DF = get_leaderboard_df(EVAL_RESULTS_PATH, EVAL_REQUESTS_PATH, COLS, BENCHMARK_COLS)
56
+ print(f"Initial leaderboard_df shape: {LEADERBOARD_DF.shape}")
57
+ print("Initial leaderboard_df columns:", LEADERBOARD_DF.columns.tolist())
58
+ print("Initial leaderboard_df sample data:")
59
+ print(LEADERBOARD_DF.head())
60
+
61
  original_df = LEADERBOARD_DF
62
  leaderboard_df = original_df.copy()
63
  (
 
81
  show_flagged: bool,
82
  query: str,
83
  ):
84
+ filtered_df = filter_models(
85
+ hidden_df, type_query, size_query, precision_query,
86
+ add_special_tokens_query, num_few_shots_query,
87
+ show_deleted, show_merges, show_flagged
88
+ )
89
  filtered_df = filter_queries(query, filtered_df)
90
+
91
  print(f"Filter applied: query={query}, columns={columns}, type_query={type_query}, precision_query={precision_query}")
92
+ print(f"Filtered DataFrame shape: {filtered_df.shape}")
93
  print(filtered_df.head()) # フィルタ後のデータを確認
94
+
95
  df = select_columns(filtered_df, columns)
96
+ print(f"DataFrame after selecting columns: {df.shape}")
97
+ print(df.head()) # 選択後のデータを確認
98
+
99
  return df
100
 
101
 
102
+
103
  def load_query(request: gr.Request): # triggered only once at startup => read query parameter if it exists
104
  query = request.query_params.get("query") or ""
105
  return query, query # return one for the "search_bar", one for a hidden component that triggers a reload only if value has changed
 
142
 
143
 
144
  def filter_models(
145
+ df: pd.DataFrame,
146
+ type_query: list,
147
+ size_query: list,
148
+ precision_query: list,
149
+ add_special_tokens_query: list,
150
+ num_few_shots_query: list,
151
+ show_deleted: bool,
152
+ show_merges: bool,
153
+ show_flagged: bool
154
  ) -> pd.DataFrame:
155
+ # 初期状態
156
+ print(f"Initial DataFrame shape: {df.shape}")
157
+
158
+ # Show deleted models フィルタ
159
  if show_deleted:
160
  filtered_df = df
161
+ print("Show deleted models: ON")
162
+ else:
163
  filtered_df = df[df[AutoEvalColumn.still_on_hub.name] == True]
164
+ print(f"After filtering deleted models: {filtered_df.shape}")
165
+
166
+ # Show merges フィルタ(コメントアウトされている場合はスキップ)
167
+ # if not show_merges:
168
+ # filtered_df = filtered_df[filtered_df[AutoEvalColumn.merged.name] == False]
169
+ # print(f"After filtering merged models: {filtered_df.shape}")
170
+
171
+ # Show flagged フィルタ(コメントアウトされている場合はスキップ)
172
+ # if not show_flagged:
173
+ # filtered_df = filtered_df[filtered_df[AutoEvalColumn.flagged.name] == False]
174
+ # print(f"After filtering flagged models: {filtered_df.shape}")
175
+
176
+ # Model type フィルタ
177
  type_emoji = [t[0] for t in type_query]
178
+ filtered_df = filtered_df[filtered_df[AutoEvalColumn.model_type_symbol.name].isin(type_emoji)]
179
+ print(f"After filtering by model type: {filtered_df.shape}")
 
 
180
 
181
+ # Precision フィルタ
182
+ filtered_df = filtered_df[filtered_df[AutoEvalColumn.precision.name].isin(precision_query + ["None"])]
183
+ print(f"After filtering by precision: {filtered_df.shape}")
184
+
185
+ # Add Special Tokens フィルタ
186
+ filtered_df = filtered_df[filtered_df[AutoEvalColumn.add_special_tokens.name].isin(add_special_tokens_query)]
187
+ print(f"After filtering by add_special_tokens: {filtered_df.shape}")
188
+
189
+ # Num Few Shots フィルタ
190
+ filtered_df = filtered_df[filtered_df[AutoEvalColumn.num_few_shots.name].isin(num_few_shots_query)]
191
+ print(f"After filtering by num_few_shots: {filtered_df.shape}")
192
+
193
+ # Model size フィルタ
194
  numeric_interval = pd.IntervalIndex(sorted([NUMERIC_INTERVALS[s] for s in size_query]))
195
+ params_column = pd.to_numeric(filtered_df[AutoEvalColumn.params.name], errors="coerce")
196
  mask = params_column.apply(lambda x: any(numeric_interval.contains(x)))
197
+ filtered_df = filtered_df[mask]
198
+ print(f"After filtering by model size: {filtered_df.shape}")
199
+
200
  return filtered_df
201
 
202
+
203
  leaderboard_df = filter_models(leaderboard_df, [t.to_str(" : ") for t in ModelType], list(NUMERIC_INTERVALS.keys()), [i.value.name for i in Precision], [i.value.name for i in AddSpecialTokens], [i.value.name for i in NumFewShots], False, False, False)
204
 
205
  demo = gr.Blocks(css=custom_css)