Spaces:
Running
Running
File size: 19,999 Bytes
6ebb0fb |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 |
import matplotlib
matplotlib.use('Agg') # Use Agg backend for thread safety
import matplotlib.pyplot as plt
import numpy as np
import pandas as pd
import seaborn as sns
import json
import os
from leaderboard_utils import (
get_organization,
get_mario_leaderboard,
get_sokoban_leaderboard,
get_2048_leaderboard,
get_candy_leaderboard,
get_tetris_leaderboard,
get_tetris_planning_leaderboard,
get_combined_leaderboard,
GAME_ORDER
)
# Load model colors
with open('assets/model_color.json', 'r') as f:
MODEL_COLORS = json.load(f)
# Define game score columns mapping
GAME_SCORE_COLUMNS = {
"Super Mario Bros": "Score",
"Sokoban": "Levels Cracked",
"2048": "Score",
"Candy Crash": "Average Score",
"Tetris (complete)": "Score",
"Tetris (planning only)": "Score"
}
def normalize_values(values, mean, std):
"""
Normalize values using z-score and scale to 0-100 range
Args:
values (list): List of values to normalize
mean (float): Mean value for normalization
std (float): Standard deviation for normalization
Returns:
list: Normalized values scaled to 0-100 range
"""
if std == 0:
return [50 if v > 0 else 0 for v in values] # Handle zero std case
z_scores = [(v - mean) / std for v in values]
# Scale z-scores to 0-100 range, with mean at 50
scaled_values = [max(0, min(100, (z * 30) + 50)) for z in z_scores]
return scaled_values
def simplify_model_name(model_name):
"""
Simplify model name by either taking first 11 chars or string before third '-'
"""
hyphen_parts = model_name.split('-')
return '-'.join(hyphen_parts[:3]) if len(hyphen_parts) >= 3 else model_name[:11]
def create_horizontal_bar_chart(df, game_name):
"""
Create horizontal bar chart for detailed game view
Args:
df (pd.DataFrame): DataFrame containing game data
game_name (str): Name of the game to display
Returns:
matplotlib.figure.Figure: The generated bar chart figure
"""
# Close any existing figures to prevent memory leaks
plt.close('all')
# Set style
plt.style.use('default')
# Increase figure width to accommodate long model names
fig, ax = plt.subplots(figsize=(20, 11))
# Sort by score
if game_name == "Super Mario Bros":
score_col = "Score"
df_sorted = df.sort_values(by=score_col, ascending=True)
elif game_name == "Sokoban":
# Process Sokoban scores by splitting and getting max level
def get_max_level(levels_str):
try:
# Split by semicolon, strip whitespace, filter empty strings, convert to integers
levels = [int(x.strip()) for x in levels_str.split(";") if x.strip()]
return max(levels) if levels else 0
except:
return 0
# Create a temporary column with max levels
df['Max Level'] = df['Levels Cracked'].apply(get_max_level)
df_sorted = df.sort_values(by='Max Level', ascending=True)
score_col = 'Max Level'
elif game_name == "2048":
score_col = "Score"
df_sorted = df.sort_values(by=score_col, ascending=True)
elif game_name == "Candy Crash":
score_col = "Average Score"
df_sorted = df.sort_values(by=score_col, ascending=True)
elif game_name in ["Tetris (complete)", "Tetris (planning only)"]:
score_col = "Score"
df_sorted = df.sort_values(by=score_col, ascending=True)
else:
return None
# Create color gradient
colors = plt.cm.viridis(np.linspace(0.2, 0.8, len(df_sorted)))
# Create horizontal bars
bars = ax.barh(range(len(df_sorted)), df_sorted[score_col], color=colors)
# Add more space for labels on the left
plt.subplots_adjust(left=0.3)
# Customize the chart
ax.set_yticks(range(len(df_sorted)))
# Format player names: keep organization info and truncate the rest if too long
def format_player_name(player, org):
max_length = 40 # Maximum length for player name
if len(player) > max_length:
# Keep the first part and last part of the name
parts = player.split('-')
if len(parts) > 3:
formatted = f"{parts[0]}-{parts[1]}-...{parts[-1]}"
else:
formatted = player[:max_length-3] + "..."
else:
formatted = player
return f"{formatted} [{org}]"
player_labels = [format_player_name(row['Player'], row['Organization'])
for _, row in df_sorted.iterrows()]
ax.set_yticklabels(player_labels, fontsize=9)
# Add value labels on the bars
for i, bar in enumerate(bars):
width = bar.get_width()
if game_name == "Candy Crash":
score_text = f'{width:.1f}'
else:
score_text = f'{width:.0f}'
ax.text(width, bar.get_y() + bar.get_height()/2,
score_text,
ha='left', va='center',
fontsize=10,
fontweight='bold',
color='white',
bbox=dict(facecolor=(0, 0, 0, 0.3),
edgecolor='none',
alpha=0.5,
pad=2))
# Set title and labels
ax.set_title(f"{game_name} Performance",
pad=20,
fontsize=14,
fontweight='bold',
color='#2c3e50')
if game_name == "Sokoban":
ax.set_xlabel("Maximum Level Reached",
fontsize=12,
fontweight='bold',
color='#2c3e50',
labelpad=10)
else:
ax.set_xlabel(score_col,
fontsize=12,
fontweight='bold',
color='#2c3e50',
labelpad=10)
# Add grid lines
ax.grid(True, axis='x', linestyle='--', alpha=0.3)
# Remove top and right spines
ax.spines['top'].set_visible(False)
ax.spines['right'].set_visible(False)
# Adjust layout
plt.tight_layout()
return fig
def create_radar_charts(df):
"""
Create two radar charts with improved normalization using z-scores
"""
# Close any existing figures to prevent memory leaks
plt.close('all')
# Define reasoning models
reasoning_models = [
'claude-3-7-sonnet-20250219(thinking)',
'o1-2024-12-17',
'gemini-2.0-flash-thinking-exp-1219',
'o3-mini-2025-01-31(medium)',
'gemini-2.5-pro-exp-03-25',
'o1-mini-2024-09-12',
'deepseek-r1'
]
# Split dataframe into reasoning and non-reasoning models
df_reasoning = df[df['Player'].isin(reasoning_models)]
df_others = df[~df['Player'].isin(reasoning_models)]
# Get game columns
game_columns = [col for col in df.columns if col.endswith(' Score')]
categories = [col.replace(' Score', '') for col in game_columns]
# Create figure with two subplots - adjusted size for new layout
fig, (ax1, ax2) = plt.subplots(1, 2, figsize=(10, 6), subplot_kw=dict(projection='polar'))
fig.patch.set_facecolor('white') # Set figure background to white
def get_game_stats(df, game_col):
"""
Get mean and std for a game column, handling missing values
"""
values = []
for val in df[game_col]:
if isinstance(val, str) and val == '_':
values.append(0)
else:
try:
values.append(float(val))
except:
values.append(0)
return np.mean(values), np.std(values)
def setup_radar_plot(ax, data, title):
ax.set_facecolor('white') # Set subplot background to white
num_vars = len(categories)
angles = np.linspace(0, 2*np.pi, num_vars, endpoint=False)
angles = np.concatenate((angles, [angles[0]]))
# Plot grid lines with darker color
grid_values = [10, 30, 50, 70, 90]
ax.set_rgrids(grid_values,
labels=grid_values,
angle=45,
fontsize=6,
alpha=0.7, # Increased alpha for better visibility
color='#404040') # Darker color for grid labels
# Make grid lines darker but still subtle
ax.grid(True, color='#404040', alpha=0.3) # Darker grid lines
# Define darker, more vibrant colors for the radar plots
colors = ['#1f77b4', '#d62728', '#2ca02c', '#ff7f0e', '#9467bd', '#8c564b']
# Calculate game statistics once
game_stats = {col: get_game_stats(df, col) for col in game_columns}
# Plot data with darker lines and higher opacity for fills
for idx, (_, row) in enumerate(data.iterrows()):
values = []
for col in game_columns:
val = row[col]
if isinstance(val, str) and val == '_':
values.append(0)
else:
try:
values.append(float(val))
except:
values.append(0)
# Normalize values using game statistics
normalized_values = []
for i, v in enumerate(values):
mean, std = game_stats[game_columns[i]]
normalized_value = normalize_values([v], mean, std)[0]
normalized_values.append(normalized_value)
# Complete the circular plot
normalized_values = np.concatenate((normalized_values, [normalized_values[0]]))
model_name = simplify_model_name(row['Player'])
ax.plot(angles, normalized_values, 'o-', linewidth=2.0, # Increased line width
label=model_name,
color=colors[idx % len(colors)],
markersize=4) # Increased marker size
ax.fill(angles, normalized_values,
alpha=0.3, # Increased fill opacity
color=colors[idx % len(colors)])
# Format categories
formatted_categories = []
for game in categories:
if game == "Tetris (planning only)":
game = "Tetris\n(planning)"
elif game == "Tetris (complete)":
game = "Tetris\n(complete)"
elif game == "Super Mario Bros":
game = "Super\nMario"
elif game == "Candy Crash":
game = "Candy\nCrash"
formatted_categories.append(game)
ax.set_xticks(angles[:-1])
ax.set_xticklabels(formatted_categories,
fontsize=8, # Slightly larger font
color='#202020', # Darker text
fontweight='bold') # Bold text
ax.tick_params(pad=10, colors='#202020') # Darker tick colors
ax.set_title(title,
pad=20,
fontsize=11, # Slightly larger title
color='#202020', # Darker title
fontweight='bold') # Bold title
legend = ax.legend(loc='upper right',
bbox_to_anchor=(1.3, 1.1),
fontsize=7, # Slightly larger legend
framealpha=0.9, # More opaque legend
edgecolor='#404040', # Darker edge
ncol=1)
ax.set_ylim(0, 105)
ax.spines['polar'].set_color('#404040') # Darker spine
ax.spines['polar'].set_alpha(0.5) # More visible spine
# Setup both plots
setup_radar_plot(ax1, df_reasoning, "Reasoning Models")
setup_radar_plot(ax2, df_others, "Non-Reasoning Models")
plt.subplots_adjust(right=0.85, wspace=0.3)
return fig
def get_combined_leaderboard_with_radar(rank_data, selected_games):
"""
Get combined leaderboard and create radar charts
"""
df = get_combined_leaderboard(rank_data, selected_games)
radar_fig = create_radar_charts(df)
return df, radar_fig
def create_organization_radar_chart(rank_data):
"""
Create radar chart comparing organizations
"""
# Get combined leaderboard with all games
df = get_combined_leaderboard(rank_data, {game: True for game in GAME_ORDER})
# Group by organization and calculate average scores
org_performance = {}
for org in df["Organization"].unique():
org_df = df[df["Organization"] == org]
scores = {}
for game in GAME_ORDER:
game_scores = org_df[f"{game} Score"].apply(lambda x: float(x) if x != "_" else 0)
scores[game] = game_scores.mean()
org_performance[org] = scores
# Create radar chart
return create_radar_charts(pd.DataFrame([org_performance]))
def create_top_players_radar_chart(rank_data, n=5):
"""
Create radar chart for top N players
"""
# Get combined leaderboard with all games
df = get_combined_leaderboard(rank_data, {game: True for game in GAME_ORDER})
# Get top N players
top_players = df["Player"].head(n).tolist()
# Create radar chart for top players
return create_radar_charts(df[df["Player"].isin(top_players)])
def create_player_radar_chart(rank_data, player_name):
"""
Create radar chart for a specific player
"""
# Get combined leaderboard with all games
df = get_combined_leaderboard(rank_data, {game: True for game in GAME_ORDER})
# Get player's data
player_df = df[df["Player"] == player_name]
if player_df.empty:
return None
# Create radar chart for the player
return create_radar_charts(player_df)
def create_group_bar_chart(df):
"""
Create a grouped bar chart comparing AI model performance across different games
Args:
df (pd.DataFrame): DataFrame containing the combined leaderboard data
Returns:
matplotlib.figure.Figure: The generated group bar chart figure
"""
# Close any existing figures to prevent memory leaks
plt.close('all')
# Create figure and axis with better styling
sns.set_style("whitegrid")
fig = plt.figure(figsize=(20, 11))
# Create subplot with specific spacing
ax = plt.subplot(111)
# Adjust the subplot parameters
plt.subplots_adjust(top=0.90, # Add more space at the top
bottom=0.15, # Add more space at the bottom
right=0.85, # Add more space for legend
left=0.05) # Add space on the left
# Get unique models
models = df['Player'].unique()
# Get active games (those that have score columns in the DataFrame)
active_games = []
for game in GAME_ORDER:
score_col = f"{game} Score" # Use the same column name for all games
if score_col in df.columns:
active_games.append(game)
n_games = len(active_games)
if n_games == 0:
return fig # Return empty figure if no games are selected
# Keep track of which models have data in any game
models_with_data = set()
# Calculate normalized scores for each game
for game_idx, game in enumerate(active_games):
# Get all scores for this game
game_scores = []
# Use the same score column name for all games
score_col = f"{game} Score"
for model in models:
try:
score = df[df['Player'] == model][score_col].values[0]
if score != '_' and float(score) > 0: # Only include non-zero scores
game_scores.append((model, float(score)))
models_with_data.add(model) # Add model to set if it has valid data
except (IndexError, ValueError):
continue
if not game_scores: # Skip if no valid scores for this game
continue
# Sort scores from highest to lowest
game_scores.sort(key=lambda x: x[1], reverse=True)
# Extract sorted models and scores
sorted_models = [x[0] for x in game_scores]
scores = [x[1] for x in game_scores]
# Calculate mean and std for normalization
mean = np.mean(scores)
std = np.std(scores)
# Normalize scores
normalized_scores = normalize_values(scores, mean, std)
# Calculate bar width based on number of models in this game
n_models_in_game = len(sorted_models)
bar_width = 0.8 / n_models_in_game if n_models_in_game > 0 else 0.8
# Plot bars for each model
for i, (model, score) in enumerate(zip(sorted_models, normalized_scores)):
# Only add to legend if first appearance and model has data
should_label = model in models_with_data and model not in [l.get_text() for l in ax.get_legend().get_texts()] if ax.get_legend() else True
# Get color from MODEL_COLORS, use a default if not found
color = MODEL_COLORS.get(model, f"C{i % 10}") # Use matplotlib default colors as fallback
ax.bar(game_idx + i*bar_width, score,
width=bar_width,
label=model if should_label else "",
color=color,
alpha=0.8)
# Customize the plot
ax.set_xticks(np.arange(n_games))
ax.set_xticklabels(active_games, rotation=45, ha='right', fontsize=10)
ax.set_ylabel('Normalized Performance Score', fontsize=12)
ax.set_title('AI Model Performance Comparison Across Gaming Tasks',
fontsize=14, pad=20)
# Add grid lines
ax.grid(True, axis='y', linestyle='--', alpha=0.3)
# Create legend with unique entries
handles, labels = ax.get_legend_handles_labels()
by_label = dict(zip(labels, handles))
# Sort models by their first appearance in active games
model_order = []
for game in active_games:
score_col = f"{game} Score" # Use the same column name for all games
for model in models:
try:
score = df[df['Player'] == model][score_col].values[0]
if score != '_' and float(score) > 0 and model not in model_order:
model_order.append(model)
except (IndexError, ValueError):
continue
# Create legend with sorted models
sorted_handles = [by_label[model] for model in model_order if model in by_label]
sorted_labels = [model for model in model_order if model in by_label]
ax.legend(sorted_handles, sorted_labels,
bbox_to_anchor=(1.00, 1), # Moved from (1.15, 1) to (1.05, 1) to shift left
loc='upper left',
fontsize=9,
title='AI Models',
title_fontsize=10)
# No need for tight_layout() as we're manually controlling the spacing
return fig
def get_combined_leaderboard_with_group_bar(rank_data, selected_games):
"""
Get combined leaderboard and create group bar chart
Args:
rank_data (dict): Dictionary containing rank data
selected_games (dict): Dictionary of game names and their selection status
Returns:
tuple: (DataFrame, matplotlib.figure.Figure) containing the leaderboard data and group bar chart
"""
df = get_combined_leaderboard(rank_data, selected_games)
group_bar_fig = create_group_bar_chart(df)
return df, group_bar_fig
def save_visualization(fig, filename):
"""
Save visualization to file
"""
fig.savefig(filename, bbox_inches='tight', dpi=300)
|