Spaces:
Running
Running
Yuxuan-Zhang-Dexter
commited on
Commit
·
bce84cc
1
Parent(s):
5d62091
update new leaderboard data
Browse files- app.py +113 -90
- assets/model_color.json +6 -2
- data_visualization.py +69 -67
- leaderboard_utils.py +154 -64
- rank_data_03_25_2025.json +359 -336
app.py
CHANGED
@@ -10,7 +10,7 @@ from datetime import datetime, timedelta
|
|
10 |
import matplotlib.pyplot as plt
|
11 |
from leaderboard_utils import (
|
12 |
get_organization,
|
13 |
-
|
14 |
get_sokoban_leaderboard,
|
15 |
get_2048_leaderboard,
|
16 |
get_candy_leaderboard,
|
@@ -50,20 +50,22 @@ with open(TIME_POINTS["03/25/2025"], "r") as f:
|
|
50 |
leaderboard_state = {
|
51 |
"current_game": None,
|
52 |
"previous_overall": {
|
53 |
-
"Super Mario Bros": True,
|
|
|
54 |
"Sokoban": True,
|
55 |
"2048": True,
|
56 |
"Candy Crush": True,
|
57 |
-
"Tetris (complete)"
|
58 |
"Tetris (planning only)": True,
|
59 |
"Ace Attorney": True
|
60 |
},
|
61 |
"previous_details": {
|
62 |
-
"Super Mario Bros": False,
|
|
|
63 |
"Sokoban": False,
|
64 |
"2048": False,
|
65 |
"Candy Crush": False,
|
66 |
-
"Tetris (complete)": False,
|
67 |
"Tetris (planning only)": False,
|
68 |
"Ace Attorney": False
|
69 |
}
|
@@ -107,7 +109,7 @@ def prepare_dataframe_for_display(df, for_game=None):
|
|
107 |
if col.endswith(' Score'):
|
108 |
display_df[col] = display_df[col].apply(lambda x: '-' if x == '_' else x)
|
109 |
|
110 |
-
# If we're in detailed view,
|
111 |
if for_game:
|
112 |
# Sort by relevant score column
|
113 |
score_col = f"{for_game} Score"
|
@@ -116,10 +118,30 @@ def prepare_dataframe_for_display(df, for_game=None):
|
|
116 |
display_df[score_col] = pd.to_numeric(display_df[score_col], errors='coerce')
|
117 |
# Sort by score in descending order
|
118 |
display_df = display_df.sort_values(by=score_col, ascending=False)
|
119 |
-
# Add rank column based on the sort
|
120 |
-
display_df.insert(0, 'Rank', range(1, len(display_df) + 1))
|
121 |
# Filter out models that didn't participate
|
122 |
display_df = display_df[~display_df[score_col].isna()]
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
123 |
|
124 |
# Add line breaks to column headers
|
125 |
new_columns = {}
|
@@ -129,9 +151,6 @@ def prepare_dataframe_for_display(df, for_game=None):
|
|
129 |
game_name = col.replace(' Score', '')
|
130 |
new_col = f"{game_name}\nScore"
|
131 |
new_columns[col] = new_col
|
132 |
-
# Keep Organization without line breaks
|
133 |
-
# elif col == 'Organization':
|
134 |
-
# new_columns[col] = 'Organi-\nzation'
|
135 |
|
136 |
# Rename columns with new line breaks
|
137 |
if new_columns:
|
@@ -158,32 +177,35 @@ def update_df_with_height(df):
|
|
158 |
# max_height=None, # Remove height limitation - COMMENTED OUT
|
159 |
column_widths=col_widths)
|
160 |
|
161 |
-
def update_leaderboard(mario_overall, mario_details,
|
|
|
162 |
sokoban_overall, sokoban_details,
|
163 |
_2048_overall, _2048_details,
|
164 |
candy_overall, candy_details,
|
165 |
-
tetris_overall, tetris_details,
|
166 |
tetris_plan_overall, tetris_plan_details,
|
167 |
ace_attorney_overall, ace_attorney_details):
|
168 |
global leaderboard_state
|
169 |
|
170 |
# Convert current checkbox states to dictionary for easier comparison
|
171 |
current_overall = {
|
172 |
-
"Super Mario Bros": mario_overall,
|
|
|
173 |
"Sokoban": sokoban_overall,
|
174 |
"2048": _2048_overall,
|
175 |
"Candy Crush": candy_overall,
|
176 |
-
"Tetris (complete)": tetris_overall,
|
177 |
"Tetris (planning only)": tetris_plan_overall,
|
178 |
"Ace Attorney": ace_attorney_overall
|
179 |
}
|
180 |
|
181 |
current_details = {
|
182 |
-
"Super Mario Bros": mario_details,
|
|
|
183 |
"Sokoban": sokoban_details,
|
184 |
"2048": _2048_details,
|
185 |
"Candy Crush": candy_details,
|
186 |
-
"Tetris (complete)": tetris_details,
|
187 |
"Tetris (planning only)": tetris_plan_details,
|
188 |
"Ace Attorney": ace_attorney_details
|
189 |
}
|
@@ -266,11 +288,12 @@ def update_leaderboard(mario_overall, mario_details,
|
|
266 |
|
267 |
# Build dictionary for selected games
|
268 |
selected_games = {
|
269 |
-
"Super Mario Bros": current_overall["Super Mario Bros"],
|
|
|
270 |
"Sokoban": current_overall["Sokoban"],
|
271 |
"2048": current_overall["2048"],
|
272 |
"Candy Crush": current_overall["Candy Crush"],
|
273 |
-
"Tetris (complete)": current_overall["Tetris (complete)"],
|
274 |
"Tetris (planning only)": current_overall["Tetris (planning only)"],
|
275 |
"Ace Attorney": current_overall["Ace Attorney"]
|
276 |
}
|
@@ -278,54 +301,49 @@ def update_leaderboard(mario_overall, mario_details,
|
|
278 |
# Get the appropriate DataFrame and charts based on current state
|
279 |
if leaderboard_state["current_game"]:
|
280 |
# For detailed view
|
281 |
-
if leaderboard_state["current_game"] == "Super Mario Bros":
|
282 |
-
|
|
|
|
|
283 |
elif leaderboard_state["current_game"] == "Sokoban":
|
284 |
df = get_sokoban_leaderboard(rank_data)
|
285 |
elif leaderboard_state["current_game"] == "2048":
|
286 |
df = get_2048_leaderboard(rank_data)
|
287 |
elif leaderboard_state["current_game"] == "Candy Crush":
|
288 |
df = get_candy_leaderboard(rank_data)
|
289 |
-
elif leaderboard_state["current_game"] == "Tetris (complete)":
|
290 |
-
df = get_tetris_leaderboard(rank_data)
|
291 |
elif leaderboard_state["current_game"] == "Tetris (planning only)":
|
292 |
df = get_tetris_planning_leaderboard(rank_data)
|
293 |
elif leaderboard_state["current_game"] == "Ace Attorney":
|
294 |
df = get_ace_attorney_leaderboard(rank_data)
|
|
|
|
|
295 |
|
296 |
-
# Format the DataFrame for display
|
297 |
display_df = prepare_dataframe_for_display(df, leaderboard_state["current_game"])
|
298 |
-
|
299 |
-
# Always create a new chart for detailed view
|
300 |
chart = create_horizontal_bar_chart(df, leaderboard_state["current_game"])
|
301 |
-
#
|
302 |
-
|
303 |
-
group_bar_chart = chart
|
304 |
else:
|
305 |
# For overall view
|
306 |
-
df,
|
307 |
-
# Format the DataFrame for display
|
308 |
display_df = prepare_dataframe_for_display(df)
|
309 |
-
# Use the same selected_games for radar chart
|
310 |
_, radar_chart = get_combined_leaderboard_with_single_radar(rank_data, selected_games)
|
311 |
-
chart = radar_chart
|
312 |
-
group_bar_chart = radar_chart # Use radar chart instead of bar chart
|
313 |
|
314 |
-
# Return
|
315 |
-
return (update_df_with_height(display_df), chart, radar_chart,
|
316 |
-
current_overall["Super Mario Bros"], current_details["Super Mario Bros"],
|
317 |
current_overall["Sokoban"], current_details["Sokoban"],
|
318 |
current_overall["2048"], current_details["2048"],
|
319 |
current_overall["Candy Crush"], current_details["Candy Crush"],
|
320 |
-
current_overall["Tetris (complete)"], current_details["Tetris (complete)"],
|
321 |
current_overall["Tetris (planning only)"], current_details["Tetris (planning only)"],
|
322 |
current_overall["Ace Attorney"], current_details["Ace Attorney"])
|
323 |
|
324 |
-
def update_leaderboard_with_time(time_point, mario_overall, mario_details,
|
|
|
325 |
sokoban_overall, sokoban_details,
|
326 |
_2048_overall, _2048_details,
|
327 |
candy_overall, candy_details,
|
328 |
-
tetris_overall, tetris_details,
|
329 |
tetris_plan_overall, tetris_plan_details,
|
330 |
ace_attorney_overall, ace_attorney_details):
|
331 |
# Load rank data for the selected time point
|
@@ -334,12 +352,13 @@ def update_leaderboard_with_time(time_point, mario_overall, mario_details,
|
|
334 |
if new_rank_data is not None:
|
335 |
rank_data = new_rank_data
|
336 |
|
337 |
-
# Use the existing update_leaderboard function
|
338 |
-
return update_leaderboard(mario_overall, mario_details,
|
|
|
339 |
sokoban_overall, sokoban_details,
|
340 |
_2048_overall, _2048_details,
|
341 |
candy_overall, candy_details,
|
342 |
-
tetris_overall, tetris_details,
|
343 |
tetris_plan_overall, tetris_plan_details,
|
344 |
ace_attorney_overall, ace_attorney_details)
|
345 |
|
@@ -348,20 +367,22 @@ def get_initial_state():
|
|
348 |
return {
|
349 |
"current_game": None,
|
350 |
"previous_overall": {
|
351 |
-
"Super Mario Bros": True,
|
|
|
352 |
"Sokoban": True,
|
353 |
"2048": True,
|
354 |
"Candy Crush": True,
|
355 |
-
"Tetris (complete)"
|
356 |
"Tetris (planning only)": True,
|
357 |
"Ace Attorney": True
|
358 |
},
|
359 |
"previous_details": {
|
360 |
-
"Super Mario Bros": False,
|
|
|
361 |
"Sokoban": False,
|
362 |
"2048": False,
|
363 |
"Candy Crush": False,
|
364 |
-
"Tetris (complete)": False,
|
365 |
"Tetris (planning only)": False,
|
366 |
"Ace Attorney": False
|
367 |
}
|
@@ -370,36 +391,27 @@ def get_initial_state():
|
|
370 |
def clear_filters():
|
371 |
global leaderboard_state
|
372 |
|
373 |
-
# Reset all checkboxes to default state
|
374 |
selected_games = {
|
375 |
-
"Super Mario Bros": True,
|
376 |
"Sokoban": True,
|
377 |
"2048": True,
|
378 |
"Candy Crush": True,
|
379 |
-
"Tetris (complete)": True,
|
380 |
"Tetris (planning only)": True,
|
381 |
"Ace Attorney": True
|
382 |
}
|
383 |
|
384 |
-
# Get the combined leaderboard and group bar chart
|
385 |
df, group_bar_chart = get_combined_leaderboard_with_group_bar(rank_data, selected_games)
|
386 |
-
|
387 |
-
# Format the DataFrame for display
|
388 |
display_df = prepare_dataframe_for_display(df)
|
389 |
-
|
390 |
-
# Get the radar chart using the same selected games
|
391 |
_, radar_chart = get_combined_leaderboard_with_single_radar(rank_data, selected_games)
|
392 |
|
393 |
-
# Reset the leaderboard state to match the default checkbox states
|
394 |
leaderboard_state = get_initial_state()
|
395 |
|
396 |
-
# Return
|
397 |
-
return (update_df_with_height(display_df), radar_chart, radar_chart,
|
398 |
-
True, False,
|
399 |
True, False, # sokoban
|
400 |
True, False, # 2048
|
401 |
True, False, # candy
|
402 |
-
True, False, # tetris
|
403 |
True, False, # tetris plan
|
404 |
True, False) # ace attorney
|
405 |
|
@@ -712,7 +724,7 @@ def build_app():
|
|
712 |
margin-top: 40px !important;
|
713 |
}
|
714 |
""") as demo:
|
715 |
-
gr.Markdown("# 🎮
|
716 |
|
717 |
# Add custom JavaScript for table header line breaks
|
718 |
gr.HTML("""
|
@@ -861,29 +873,34 @@ def build_app():
|
|
861 |
label="Comparative Analysis (Radar Chart)",
|
862 |
elem_classes="visualization-container"
|
863 |
)
|
864 |
-
# Comment out the Group Bar Chart tab
|
865 |
-
# with gr.Tab("📊 Group Bar Chart"):
|
866 |
-
# group_bar_visualization = gr.Plot(
|
867 |
-
# label="Comparative Analysis (Group Bar Chart)",
|
868 |
-
# elem_classes="visualization-container"
|
869 |
-
# )
|
870 |
gr.Markdown(
|
871 |
-
|
872 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
873 |
)
|
|
|
874 |
|
875 |
# Hidden placeholder for group bar visualization (to maintain code references)
|
876 |
-
group_bar_visualization = gr.Plot(visible=False)
|
877 |
|
878 |
# Game selection section
|
879 |
with gr.Row():
|
880 |
gr.Markdown("### 🎮 Game Selection")
|
881 |
with gr.Row():
|
882 |
-
with gr.Column():
|
883 |
-
|
884 |
-
|
885 |
-
|
886 |
-
with gr.Column():
|
|
|
|
|
|
|
|
|
887 |
gr.Markdown("**📦 Sokoban**")
|
888 |
sokoban_overall = gr.Checkbox(label="Sokoban Score", value=True)
|
889 |
sokoban_details = gr.Checkbox(label="Sokoban Details", value=False)
|
@@ -895,10 +912,10 @@ def build_app():
|
|
895 |
gr.Markdown("**🍬 Candy Crush**")
|
896 |
candy_overall = gr.Checkbox(label="Candy Crush Score", value=True)
|
897 |
candy_details = gr.Checkbox(label="Candy Crush Details", value=False)
|
898 |
-
with gr.Column():
|
899 |
-
|
900 |
-
|
901 |
-
|
902 |
with gr.Column():
|
903 |
gr.Markdown("**📋 Tetris (planning)**")
|
904 |
tetris_plan_overall = gr.Checkbox(label="Tetris (planning) Score", value=True)
|
@@ -927,11 +944,12 @@ def build_app():
|
|
927 |
|
928 |
# Get initial leaderboard dataframe
|
929 |
initial_df = get_combined_leaderboard(rank_data, {
|
930 |
-
"Super Mario Bros": True,
|
|
|
931 |
"Sokoban": True,
|
932 |
"2048": True,
|
933 |
"Candy Crush": True,
|
934 |
-
"Tetris (complete)": True,
|
935 |
"Tetris (planning only)": True,
|
936 |
"Ace Attorney": True
|
937 |
})
|
@@ -967,13 +985,14 @@ def build_app():
|
|
967 |
with gr.Row():
|
968 |
score_note = add_score_note()
|
969 |
|
970 |
-
# List of all checkboxes
|
971 |
checkbox_list = [
|
972 |
-
mario_overall, mario_details,
|
|
|
973 |
sokoban_overall, sokoban_details,
|
974 |
_2048_overall, _2048_details,
|
975 |
candy_overall, candy_details,
|
976 |
-
tetris_overall, tetris_details,
|
977 |
tetris_plan_overall, tetris_plan_details,
|
978 |
ace_attorney_overall, ace_attorney_details
|
979 |
]
|
@@ -981,10 +1000,14 @@ def build_app():
|
|
981 |
# Update visualizations when checkboxes change
|
982 |
def update_visualizations(*checkbox_states):
|
983 |
# Check if any details checkbox is selected
|
|
|
984 |
is_details_view = any([
|
985 |
-
checkbox_states[1],
|
986 |
-
checkbox_states[
|
987 |
-
checkbox_states[
|
|
|
|
|
|
|
988 |
])
|
989 |
|
990 |
# Update visibility of visualization blocks
|
@@ -1010,7 +1033,7 @@ def build_app():
|
|
1010 |
leaderboard_df,
|
1011 |
detailed_visualization,
|
1012 |
radar_visualization,
|
1013 |
-
group_bar_visualization
|
1014 |
] + checkbox_list
|
1015 |
)
|
1016 |
|
@@ -1022,7 +1045,7 @@ def build_app():
|
|
1022 |
leaderboard_df,
|
1023 |
detailed_visualization,
|
1024 |
radar_visualization,
|
1025 |
-
group_bar_visualization
|
1026 |
] + checkbox_list
|
1027 |
)
|
1028 |
|
@@ -1034,7 +1057,7 @@ def build_app():
|
|
1034 |
leaderboard_df,
|
1035 |
detailed_visualization,
|
1036 |
radar_visualization,
|
1037 |
-
group_bar_visualization
|
1038 |
] + checkbox_list
|
1039 |
)
|
1040 |
|
|
|
10 |
import matplotlib.pyplot as plt
|
11 |
from leaderboard_utils import (
|
12 |
get_organization,
|
13 |
+
get_mario_planning_leaderboard,
|
14 |
get_sokoban_leaderboard,
|
15 |
get_2048_leaderboard,
|
16 |
get_candy_leaderboard,
|
|
|
50 |
leaderboard_state = {
|
51 |
"current_game": None,
|
52 |
"previous_overall": {
|
53 |
+
# "Super Mario Bros": True, # Commented out
|
54 |
+
"Super Mario Bros (planning only)": True,
|
55 |
"Sokoban": True,
|
56 |
"2048": True,
|
57 |
"Candy Crush": True,
|
58 |
+
# "Tetris (complete)", # Commented out
|
59 |
"Tetris (planning only)": True,
|
60 |
"Ace Attorney": True
|
61 |
},
|
62 |
"previous_details": {
|
63 |
+
# "Super Mario Bros": False, # Commented out
|
64 |
+
"Super Mario Bros (planning only)": False,
|
65 |
"Sokoban": False,
|
66 |
"2048": False,
|
67 |
"Candy Crush": False,
|
68 |
+
# "Tetris (complete)": False, # Commented out
|
69 |
"Tetris (planning only)": False,
|
70 |
"Ace Attorney": False
|
71 |
}
|
|
|
109 |
if col.endswith(' Score'):
|
110 |
display_df[col] = display_df[col].apply(lambda x: '-' if x == '_' else x)
|
111 |
|
112 |
+
# If we're in detailed view, sort by score
|
113 |
if for_game:
|
114 |
# Sort by relevant score column
|
115 |
score_col = f"{for_game} Score"
|
|
|
118 |
display_df[score_col] = pd.to_numeric(display_df[score_col], errors='coerce')
|
119 |
# Sort by score in descending order
|
120 |
display_df = display_df.sort_values(by=score_col, ascending=False)
|
|
|
|
|
121 |
# Filter out models that didn't participate
|
122 |
display_df = display_df[~display_df[score_col].isna()]
|
123 |
+
else:
|
124 |
+
# For overall view, sort by average of game scores (implicitly used for ranking)
|
125 |
+
# but we won't add an explicit 'Rank' or 'Average Rank' column to the final display_df
|
126 |
+
|
127 |
+
# Calculate an internal sorting key based on average scores, but don't add it to the display_df
|
128 |
+
score_cols = [col for col in display_df.columns if col.endswith(' Score')]
|
129 |
+
if score_cols:
|
130 |
+
temp_sort_df = display_df.copy()
|
131 |
+
for col in score_cols:
|
132 |
+
temp_sort_df[col] = pd.to_numeric(temp_sort_df[col], errors='coerce')
|
133 |
+
|
134 |
+
# Calculate average of the game scores (use mean of ranks from utils for actual ranking logic if different)
|
135 |
+
# For display sorting, let's use a simple average of available scores.
|
136 |
+
# The actual ranking for 'Average Rank' in leaderboard_utils uses mean of ranks, which is more robust.
|
137 |
+
# Here we just need a consistent sort order.
|
138 |
+
|
139 |
+
# Create a temporary column for sorting
|
140 |
+
temp_sort_df['temp_avg_score_for_sort'] = temp_sort_df[score_cols].mean(axis=1)
|
141 |
+
|
142 |
+
# Sort by this temporary average score (higher is better for scores)
|
143 |
+
# and then by Player name as a tie-breaker
|
144 |
+
display_df = display_df.loc[temp_sort_df.sort_values(by=['temp_avg_score_for_sort', 'Player'], ascending=[False, True]).index]
|
145 |
|
146 |
# Add line breaks to column headers
|
147 |
new_columns = {}
|
|
|
151 |
game_name = col.replace(' Score', '')
|
152 |
new_col = f"{game_name}\nScore"
|
153 |
new_columns[col] = new_col
|
|
|
|
|
|
|
154 |
|
155 |
# Rename columns with new line breaks
|
156 |
if new_columns:
|
|
|
177 |
# max_height=None, # Remove height limitation - COMMENTED OUT
|
178 |
column_widths=col_widths)
|
179 |
|
180 |
+
def update_leaderboard(# mario_overall, mario_details, # Commented out
|
181 |
+
mario_plan_overall, mario_plan_details, # Added
|
182 |
sokoban_overall, sokoban_details,
|
183 |
_2048_overall, _2048_details,
|
184 |
candy_overall, candy_details,
|
185 |
+
# tetris_overall, tetris_details, # Commented out
|
186 |
tetris_plan_overall, tetris_plan_details,
|
187 |
ace_attorney_overall, ace_attorney_details):
|
188 |
global leaderboard_state
|
189 |
|
190 |
# Convert current checkbox states to dictionary for easier comparison
|
191 |
current_overall = {
|
192 |
+
# "Super Mario Bros": mario_overall, # Commented out
|
193 |
+
"Super Mario Bros (planning only)": mario_plan_overall,
|
194 |
"Sokoban": sokoban_overall,
|
195 |
"2048": _2048_overall,
|
196 |
"Candy Crush": candy_overall,
|
197 |
+
# "Tetris (complete)": tetris_overall, # Commented out
|
198 |
"Tetris (planning only)": tetris_plan_overall,
|
199 |
"Ace Attorney": ace_attorney_overall
|
200 |
}
|
201 |
|
202 |
current_details = {
|
203 |
+
# "Super Mario Bros": mario_details, # Commented out
|
204 |
+
"Super Mario Bros (planning only)": mario_plan_details,
|
205 |
"Sokoban": sokoban_details,
|
206 |
"2048": _2048_details,
|
207 |
"Candy Crush": candy_details,
|
208 |
+
# "Tetris (complete)": tetris_details, # Commented out
|
209 |
"Tetris (planning only)": tetris_plan_details,
|
210 |
"Ace Attorney": ace_attorney_details
|
211 |
}
|
|
|
288 |
|
289 |
# Build dictionary for selected games
|
290 |
selected_games = {
|
291 |
+
# "Super Mario Bros": current_overall["Super Mario Bros"], # Commented out
|
292 |
+
"Super Mario Bros (planning only)": current_overall["Super Mario Bros (planning only)"],
|
293 |
"Sokoban": current_overall["Sokoban"],
|
294 |
"2048": current_overall["2048"],
|
295 |
"Candy Crush": current_overall["Candy Crush"],
|
296 |
+
# "Tetris (complete)": current_overall["Tetris (complete)"], # Commented out
|
297 |
"Tetris (planning only)": current_overall["Tetris (planning only)"],
|
298 |
"Ace Attorney": current_overall["Ace Attorney"]
|
299 |
}
|
|
|
301 |
# Get the appropriate DataFrame and charts based on current state
|
302 |
if leaderboard_state["current_game"]:
|
303 |
# For detailed view
|
304 |
+
# if leaderboard_state["current_game"] == "Super Mario Bros": # Commented out
|
305 |
+
# df = get_mario_leaderboard(rank_data)
|
306 |
+
if leaderboard_state["current_game"] == "Super Mario Bros (planning only)":
|
307 |
+
df = get_mario_planning_leaderboard(rank_data)
|
308 |
elif leaderboard_state["current_game"] == "Sokoban":
|
309 |
df = get_sokoban_leaderboard(rank_data)
|
310 |
elif leaderboard_state["current_game"] == "2048":
|
311 |
df = get_2048_leaderboard(rank_data)
|
312 |
elif leaderboard_state["current_game"] == "Candy Crush":
|
313 |
df = get_candy_leaderboard(rank_data)
|
|
|
|
|
314 |
elif leaderboard_state["current_game"] == "Tetris (planning only)":
|
315 |
df = get_tetris_planning_leaderboard(rank_data)
|
316 |
elif leaderboard_state["current_game"] == "Ace Attorney":
|
317 |
df = get_ace_attorney_leaderboard(rank_data)
|
318 |
+
else: # Should not happen if current_game is one of the known games
|
319 |
+
df = pd.DataFrame() # Empty df
|
320 |
|
|
|
321 |
display_df = prepare_dataframe_for_display(df, leaderboard_state["current_game"])
|
|
|
|
|
322 |
chart = create_horizontal_bar_chart(df, leaderboard_state["current_game"])
|
323 |
+
radar_chart = chart # In detailed view, radar and group bar can be the same as the main chart
|
324 |
+
group_bar_chart = chart
|
|
|
325 |
else:
|
326 |
# For overall view
|
327 |
+
df, group_bar_chart = get_combined_leaderboard_with_group_bar(rank_data, selected_games)
|
|
|
328 |
display_df = prepare_dataframe_for_display(df)
|
|
|
329 |
_, radar_chart = get_combined_leaderboard_with_single_radar(rank_data, selected_games)
|
330 |
+
chart = radar_chart # In overall view, the 'detailed' chart can be the radar chart
|
|
|
331 |
|
332 |
+
# Return values, including all four plot placeholders
|
333 |
+
return (update_df_with_height(display_df), chart, radar_chart, group_bar_chart,
|
334 |
+
current_overall["Super Mario Bros (planning only)"], current_details["Super Mario Bros (planning only)"],
|
335 |
current_overall["Sokoban"], current_details["Sokoban"],
|
336 |
current_overall["2048"], current_details["2048"],
|
337 |
current_overall["Candy Crush"], current_details["Candy Crush"],
|
|
|
338 |
current_overall["Tetris (planning only)"], current_details["Tetris (planning only)"],
|
339 |
current_overall["Ace Attorney"], current_details["Ace Attorney"])
|
340 |
|
341 |
+
def update_leaderboard_with_time(time_point, # mario_overall, mario_details, # Commented out
|
342 |
+
mario_plan_overall, mario_plan_details, # Added
|
343 |
sokoban_overall, sokoban_details,
|
344 |
_2048_overall, _2048_details,
|
345 |
candy_overall, candy_details,
|
346 |
+
# tetris_overall, tetris_details, # Commented out
|
347 |
tetris_plan_overall, tetris_plan_details,
|
348 |
ace_attorney_overall, ace_attorney_details):
|
349 |
# Load rank data for the selected time point
|
|
|
352 |
if new_rank_data is not None:
|
353 |
rank_data = new_rank_data
|
354 |
|
355 |
+
# Use the existing update_leaderboard function, including Super Mario (planning only)
|
356 |
+
return update_leaderboard(# mario_overall, mario_details, # Commented out
|
357 |
+
mario_plan_overall, mario_plan_details, # Added
|
358 |
sokoban_overall, sokoban_details,
|
359 |
_2048_overall, _2048_details,
|
360 |
candy_overall, candy_details,
|
361 |
+
# tetris_overall, tetris_details, # Commented out
|
362 |
tetris_plan_overall, tetris_plan_details,
|
363 |
ace_attorney_overall, ace_attorney_details)
|
364 |
|
|
|
367 |
return {
|
368 |
"current_game": None,
|
369 |
"previous_overall": {
|
370 |
+
# "Super Mario Bros": True, # Commented out
|
371 |
+
"Super Mario Bros (planning only)": True,
|
372 |
"Sokoban": True,
|
373 |
"2048": True,
|
374 |
"Candy Crush": True,
|
375 |
+
# "Tetris (complete)", # Commented out
|
376 |
"Tetris (planning only)": True,
|
377 |
"Ace Attorney": True
|
378 |
},
|
379 |
"previous_details": {
|
380 |
+
# "Super Mario Bros": False, # Commented out
|
381 |
+
"Super Mario Bros (planning only)": False,
|
382 |
"Sokoban": False,
|
383 |
"2048": False,
|
384 |
"Candy Crush": False,
|
385 |
+
# "Tetris (complete)": False, # Commented out
|
386 |
"Tetris (planning only)": False,
|
387 |
"Ace Attorney": False
|
388 |
}
|
|
|
391 |
def clear_filters():
|
392 |
global leaderboard_state
|
393 |
|
|
|
394 |
selected_games = {
|
395 |
+
"Super Mario Bros (planning only)": True,
|
396 |
"Sokoban": True,
|
397 |
"2048": True,
|
398 |
"Candy Crush": True,
|
|
|
399 |
"Tetris (planning only)": True,
|
400 |
"Ace Attorney": True
|
401 |
}
|
402 |
|
|
|
403 |
df, group_bar_chart = get_combined_leaderboard_with_group_bar(rank_data, selected_games)
|
|
|
|
|
404 |
display_df = prepare_dataframe_for_display(df)
|
|
|
|
|
405 |
_, radar_chart = get_combined_leaderboard_with_single_radar(rank_data, selected_games)
|
406 |
|
|
|
407 |
leaderboard_state = get_initial_state()
|
408 |
|
409 |
+
# Return values, including all four plot placeholders
|
410 |
+
return (update_df_with_height(display_df), radar_chart, radar_chart, group_bar_chart,
|
411 |
+
True, False, # mario_plan
|
412 |
True, False, # sokoban
|
413 |
True, False, # 2048
|
414 |
True, False, # candy
|
|
|
415 |
True, False, # tetris plan
|
416 |
True, False) # ace attorney
|
417 |
|
|
|
724 |
margin-top: 40px !important;
|
725 |
}
|
726 |
""") as demo:
|
727 |
+
gr.Markdown("# 🎮 Lmgame Bench: Leaderboard 🎲")
|
728 |
|
729 |
# Add custom JavaScript for table header line breaks
|
730 |
gr.HTML("""
|
|
|
873 |
label="Comparative Analysis (Radar Chart)",
|
874 |
elem_classes="visualization-container"
|
875 |
)
|
|
|
|
|
|
|
|
|
|
|
|
|
876 |
gr.Markdown(
|
877 |
+
"*💡 Click a legend entry to isolate that model. Double-click additional ones to add them for comparison.*",
|
878 |
+
elem_classes="radar-tip"
|
879 |
+
)
|
880 |
+
# Comment out the Group Bar Chart tab
|
881 |
+
with gr.Tab("📊 Group Bar Chart"):
|
882 |
+
group_bar_visualization = gr.Plot(
|
883 |
+
label="Comparative Analysis (Group Bar Chart)",
|
884 |
+
elem_classes="visualization-container"
|
885 |
)
|
886 |
+
|
887 |
|
888 |
# Hidden placeholder for group bar visualization (to maintain code references)
|
889 |
+
# group_bar_visualization = gr.Plot(visible=False)
|
890 |
|
891 |
# Game selection section
|
892 |
with gr.Row():
|
893 |
gr.Markdown("### 🎮 Game Selection")
|
894 |
with gr.Row():
|
895 |
+
# with gr.Column(): # Commented out Super Mario Bros UI
|
896 |
+
# gr.Markdown("**🎮 Super Mario Bros**")
|
897 |
+
# mario_overall = gr.Checkbox(label="Super Mario Bros Score", value=True)
|
898 |
+
# mario_details = gr.Checkbox(label="Super Mario Bros Details", value=False)
|
899 |
+
with gr.Column(): # Added Super Mario Bros (planning only) UI
|
900 |
+
gr.Markdown("**📝 Super Mario Bros (planning only)**")
|
901 |
+
mario_plan_overall = gr.Checkbox(label="Super Mario Bros (planning only) Score", value=True)
|
902 |
+
mario_plan_details = gr.Checkbox(label="Super Mario Bros (planning only) Details", value=False)
|
903 |
+
with gr.Column(): # Sokoban is now after mario_plan
|
904 |
gr.Markdown("**📦 Sokoban**")
|
905 |
sokoban_overall = gr.Checkbox(label="Sokoban Score", value=True)
|
906 |
sokoban_details = gr.Checkbox(label="Sokoban Details", value=False)
|
|
|
912 |
gr.Markdown("**🍬 Candy Crush**")
|
913 |
candy_overall = gr.Checkbox(label="Candy Crush Score", value=True)
|
914 |
candy_details = gr.Checkbox(label="Candy Crush Details", value=False)
|
915 |
+
# with gr.Column(): # Commented out Tetris (complete) UI
|
916 |
+
# gr.Markdown("**🎯 Tetris (complete)**")
|
917 |
+
# tetris_overall = gr.Checkbox(label="Tetris (complete) Score", value=True)
|
918 |
+
# tetris_details = gr.Checkbox(label="Tetris (complete) Details", value=False)
|
919 |
with gr.Column():
|
920 |
gr.Markdown("**📋 Tetris (planning)**")
|
921 |
tetris_plan_overall = gr.Checkbox(label="Tetris (planning) Score", value=True)
|
|
|
944 |
|
945 |
# Get initial leaderboard dataframe
|
946 |
initial_df = get_combined_leaderboard(rank_data, {
|
947 |
+
# "Super Mario Bros": True, # Commented out
|
948 |
+
"Super Mario Bros (planning only)": True,
|
949 |
"Sokoban": True,
|
950 |
"2048": True,
|
951 |
"Candy Crush": True,
|
952 |
+
# "Tetris (complete)": True, # Commented out
|
953 |
"Tetris (planning only)": True,
|
954 |
"Ace Attorney": True
|
955 |
})
|
|
|
985 |
with gr.Row():
|
986 |
score_note = add_score_note()
|
987 |
|
988 |
+
# List of all checkboxes, including Super Mario Bros (planning only)
|
989 |
checkbox_list = [
|
990 |
+
# mario_overall, mario_details, # Commented out
|
991 |
+
mario_plan_overall, mario_plan_details,
|
992 |
sokoban_overall, sokoban_details,
|
993 |
_2048_overall, _2048_details,
|
994 |
candy_overall, candy_details,
|
995 |
+
# tetris_overall, tetris_details, # Commented out
|
996 |
tetris_plan_overall, tetris_plan_details,
|
997 |
ace_attorney_overall, ace_attorney_details
|
998 |
]
|
|
|
1000 |
# Update visualizations when checkboxes change
|
1001 |
def update_visualizations(*checkbox_states):
|
1002 |
# Check if any details checkbox is selected
|
1003 |
+
# Adjusted indices due to addition of Super Mario (planning only)
|
1004 |
is_details_view = any([
|
1005 |
+
checkbox_states[1], # Mario Plan details
|
1006 |
+
checkbox_states[3], # Sokoban details
|
1007 |
+
checkbox_states[5], # 2048 details
|
1008 |
+
checkbox_states[7], # Candy Crush details
|
1009 |
+
checkbox_states[9], # Tetris (planning only) details
|
1010 |
+
checkbox_states[11] # Ace Attorney details
|
1011 |
])
|
1012 |
|
1013 |
# Update visibility of visualization blocks
|
|
|
1033 |
leaderboard_df,
|
1034 |
detailed_visualization,
|
1035 |
radar_visualization,
|
1036 |
+
group_bar_visualization # RESTORED
|
1037 |
] + checkbox_list
|
1038 |
)
|
1039 |
|
|
|
1045 |
leaderboard_df,
|
1046 |
detailed_visualization,
|
1047 |
radar_visualization,
|
1048 |
+
group_bar_visualization # RESTORED
|
1049 |
] + checkbox_list
|
1050 |
)
|
1051 |
|
|
|
1057 |
leaderboard_df,
|
1058 |
detailed_visualization,
|
1059 |
radar_visualization,
|
1060 |
+
group_bar_visualization # RESTORED
|
1061 |
] + checkbox_list
|
1062 |
)
|
1063 |
|
assets/model_color.json
CHANGED
@@ -1,12 +1,14 @@
|
|
1 |
{
|
2 |
"claude-3-7-sonnet-20250219": "#4A90E2",
|
3 |
-
"claude-3-7-sonnet-20250219(thinking)": "#2E5C8A",
|
4 |
"claude-3-5-haiku-20241022": "#7FB5E6",
|
5 |
"claude-3-5-sonnet-20241022": "#1A4C7C",
|
6 |
"gemini-2.0-flash": "#FF4081",
|
7 |
"gemini-2.0-flash-thinking-exp-1219": "#C2185B",
|
8 |
"gemini-2.5-pro-exp-03-25": "#FF80AB",
|
9 |
"gemini-2.5-flash-preview-04-17": "#F06292",
|
|
|
|
|
10 |
"gpt-4o-2024-11-20": "#00BFA5",
|
11 |
"gpt-4.5-preview-2025-02-27": "#00796B",
|
12 |
"gpt-4.1-2025-04-14": "#00897B",
|
@@ -17,7 +19,9 @@
|
|
17 |
"o4-mini-2025-04-16": "#00ACC1",
|
18 |
"grok-3-beta": "#FF7043",
|
19 |
"grok-3-mini-beta": "#FF8A65",
|
|
|
20 |
"deepseek-v3": "#FFC107",
|
21 |
"deepseek-r1": "#FFA000",
|
22 |
-
"llama-4-maverick-17b-128e-instruct-fp8": "#8E24AA"
|
|
|
23 |
}
|
|
|
1 |
{
|
2 |
"claude-3-7-sonnet-20250219": "#4A90E2",
|
3 |
+
"claude-3-7-sonnet-20250219 (thinking)": "#2E5C8A",
|
4 |
"claude-3-5-haiku-20241022": "#7FB5E6",
|
5 |
"claude-3-5-sonnet-20241022": "#1A4C7C",
|
6 |
"gemini-2.0-flash": "#FF4081",
|
7 |
"gemini-2.0-flash-thinking-exp-1219": "#C2185B",
|
8 |
"gemini-2.5-pro-exp-03-25": "#FF80AB",
|
9 |
"gemini-2.5-flash-preview-04-17": "#F06292",
|
10 |
+
"gemini-2.5-flash-preview-04-17 (thinking)": "#E91E63",
|
11 |
+
"gemini-2.5-pro-preview-05-06 (thinking)": "#AD1457",
|
12 |
"gpt-4o-2024-11-20": "#00BFA5",
|
13 |
"gpt-4.5-preview-2025-02-27": "#00796B",
|
14 |
"gpt-4.1-2025-04-14": "#00897B",
|
|
|
19 |
"o4-mini-2025-04-16": "#00ACC1",
|
20 |
"grok-3-beta": "#FF7043",
|
21 |
"grok-3-mini-beta": "#FF8A65",
|
22 |
+
"grok-3-mini-beta (thinking)": "#F57C00",
|
23 |
"deepseek-v3": "#FFC107",
|
24 |
"deepseek-r1": "#FFA000",
|
25 |
+
"llama-4-maverick-17b-128e-instruct-fp8": "#8E24AA",
|
26 |
+
"Random (x30)": "#9E9E9E"
|
27 |
}
|
data_visualization.py
CHANGED
@@ -56,76 +56,76 @@ def simplify_model_name(name):
|
|
56 |
return '-'.join(parts[:4]) + '-...' if len(parts) > 4 else name
|
57 |
|
58 |
def create_horizontal_bar_chart(df, game_name):
|
59 |
-
|
60 |
-
|
61 |
-
|
62 |
-
|
63 |
-
|
64 |
-
|
65 |
-
|
66 |
-
|
67 |
-
|
68 |
-
|
69 |
-
|
70 |
-
|
71 |
-
|
72 |
-
|
73 |
-
|
74 |
-
|
75 |
-
|
76 |
-
|
77 |
-
|
78 |
-
|
79 |
-
|
80 |
-
|
81 |
-
|
82 |
-
|
83 |
-
|
84 |
-
|
85 |
-
|
86 |
-
|
87 |
-
|
88 |
-
|
89 |
-
|
90 |
-
|
91 |
-
|
92 |
-
|
93 |
-
|
94 |
-
|
95 |
-
|
96 |
-
|
97 |
-
|
98 |
-
|
99 |
-
|
100 |
-
|
101 |
-
|
102 |
-
|
103 |
-
|
104 |
-
|
|
|
|
|
|
|
|
|
105 |
|
106 |
fig.update_layout(
|
107 |
-
autosize=False,
|
108 |
-
width=1000,
|
109 |
-
height=600,
|
110 |
-
margin=dict(l=200, r=200, t=20, b=20),
|
111 |
title=dict(
|
112 |
-
text=f
|
113 |
-
|
114 |
-
font=dict(size=20)
|
115 |
),
|
116 |
-
|
117 |
-
|
118 |
-
|
119 |
-
|
120 |
-
|
121 |
-
|
122 |
-
|
123 |
-
|
124 |
-
|
125 |
-
|
126 |
-
|
127 |
-
)
|
128 |
)
|
|
|
129 |
return fig
|
130 |
|
131 |
def create_radar_charts(df):
|
@@ -324,8 +324,10 @@ def create_single_radar_chart(df, selected_games=None, highlight_models=None):
|
|
324 |
# Format game names
|
325 |
formatted_games = []
|
326 |
for game in selected_games:
|
327 |
-
if game == 'Super Mario Bros':
|
328 |
formatted_games.append('Super Mario') # Simplified name
|
|
|
|
|
329 |
else:
|
330 |
formatted_games.append(game) # Keep other names as is
|
331 |
|
@@ -387,7 +389,7 @@ def create_single_radar_chart(df, selected_games=None, highlight_models=None):
|
|
387 |
fig.update_layout(
|
388 |
autosize=False,
|
389 |
width=1000,
|
390 |
-
height=
|
391 |
margin=dict(l=400, r=200, t=20, b=20),
|
392 |
title=dict(
|
393 |
text="AI Normalized Performance Across Games",
|
|
|
56 |
return '-'.join(parts[:4]) + '-...' if len(parts) > 4 else name
|
57 |
|
58 |
def create_horizontal_bar_chart(df, game_name):
|
59 |
+
"""Creates a horizontal bar chart for a given game's leaderboard data."""
|
60 |
+
|
61 |
+
if df is None or df.empty:
|
62 |
+
# Return a placeholder or an empty figure if there's no data
|
63 |
+
fig = go.Figure()
|
64 |
+
fig.update_layout(
|
65 |
+
title=f"No data available for {game_name}",
|
66 |
+
xaxis_title="Score",
|
67 |
+
yaxis_title="Player",
|
68 |
+
plot_bgcolor='rgba(0,0,0,0)',
|
69 |
+
paper_bgcolor='rgba(0,0,0,0)',
|
70 |
+
font=dict(color='#2c3e50')
|
71 |
+
)
|
72 |
+
return fig
|
73 |
+
|
74 |
+
score_col = "Score" # Standardized score column name
|
75 |
+
|
76 |
+
if score_col not in df.columns:
|
77 |
+
fig = go.Figure()
|
78 |
+
fig.update_layout(title=f"'{score_col}' column not found for {game_name}")
|
79 |
+
return fig
|
80 |
+
|
81 |
+
# Ensure the score column is numeric for sorting and plotting
|
82 |
+
df[score_col] = pd.to_numeric(df[score_col], errors='coerce')
|
83 |
+
df_cleaned = df.dropna(subset=[score_col]) # Remove rows where score is NaN after conversion
|
84 |
+
|
85 |
+
if df_cleaned.empty:
|
86 |
+
fig = go.Figure()
|
87 |
+
fig.update_layout(title=f"No valid score data to plot for {game_name}")
|
88 |
+
return fig
|
89 |
+
|
90 |
+
# Sort values for chart display (lowest score at the top of the chart)
|
91 |
+
# The input df is already sorted descending by score from leaderboard_utils
|
92 |
+
# Re-sorting ascending=True here means player with lowest score is at the top of the y-axis categories
|
93 |
+
df_sorted = df_cleaned.sort_values(by=score_col, ascending=True)
|
94 |
+
|
95 |
+
fig = go.Figure(
|
96 |
+
go.Bar(
|
97 |
+
y=df_sorted['Player'],
|
98 |
+
x=df_sorted[score_col],
|
99 |
+
orientation='h',
|
100 |
+
marker=dict(
|
101 |
+
color=df_sorted[score_col],
|
102 |
+
colorscale='Viridis', # Example colorscale, can be changed
|
103 |
+
line=dict(color='#2c3e50', width=1)
|
104 |
+
),
|
105 |
+
hovertext=df_sorted[score_col].round(2).astype(str) + ' points',
|
106 |
+
hoverinfo='y+text'
|
107 |
+
)
|
108 |
+
)
|
109 |
|
110 |
fig.update_layout(
|
|
|
|
|
|
|
|
|
111 |
title=dict(
|
112 |
+
text=f'{game_name} Scores',
|
113 |
+
x=0.5,
|
114 |
+
font=dict(size=20, color='#2c3e50')
|
115 |
),
|
116 |
+
xaxis_title="Score",
|
117 |
+
yaxis_title="Player",
|
118 |
+
plot_bgcolor='rgba(0,0,0,0)', # Transparent plot background
|
119 |
+
paper_bgcolor='rgba(0,0,0,0)', # Transparent paper background
|
120 |
+
font=dict(color='#2c3e50'), # Dark text for better readability on light backgrounds
|
121 |
+
margin=dict(l=150, r=20, t=50, b=50), # Adjust margins for player names
|
122 |
+
yaxis=dict(
|
123 |
+
automargin=True,
|
124 |
+
tickfont=dict(size=10)
|
125 |
+
),
|
126 |
+
xaxis=dict(gridcolor='#e0e0e0') # Light gridlines for x-axis
|
|
|
127 |
)
|
128 |
+
|
129 |
return fig
|
130 |
|
131 |
def create_radar_charts(df):
|
|
|
324 |
# Format game names
|
325 |
formatted_games = []
|
326 |
for game in selected_games:
|
327 |
+
if game == 'Super Mario Bros (planning only)':
|
328 |
formatted_games.append('Super Mario') # Simplified name
|
329 |
+
elif game == 'Tetris (planning only)':
|
330 |
+
formatted_games.append('Tetris')
|
331 |
else:
|
332 |
formatted_games.append(game) # Keep other names as is
|
333 |
|
|
|
389 |
fig.update_layout(
|
390 |
autosize=False,
|
391 |
width=1000,
|
392 |
+
height=700, # Increased height to accommodate legend
|
393 |
margin=dict(l=400, r=200, t=20, b=20),
|
394 |
title=dict(
|
395 |
text="AI Normalized Performance Across Games",
|
leaderboard_utils.py
CHANGED
@@ -4,11 +4,12 @@ import numpy as np
|
|
4 |
|
5 |
# Define game order
|
6 |
GAME_ORDER = [
|
7 |
-
"Super Mario Bros",
|
|
|
8 |
"Sokoban",
|
9 |
"2048",
|
10 |
"Candy Crush",
|
11 |
-
"Tetris (complete)",
|
12 |
"Tetris (planning only)",
|
13 |
"Ace Attorney"
|
14 |
]
|
@@ -41,31 +42,86 @@ def get_mario_leaderboard(rank_data):
|
|
41 |
})
|
42 |
df["Organization"] = df["Player"].apply(get_organization)
|
43 |
df = df[["Player", "Organization", "Progress (current/total)", "Score", "Time (s)"]]
|
|
|
|
|
44 |
return df
|
45 |
|
46 |
def get_sokoban_leaderboard(rank_data):
|
47 |
data = rank_data.get("Sokoban", {}).get("results", [])
|
48 |
df = pd.DataFrame(data)
|
49 |
df = df.rename(columns={
|
50 |
-
"model": "Player",
|
51 |
-
"
|
52 |
-
"steps": "Steps"
|
|
|
|
|
53 |
})
|
54 |
df["Organization"] = df["Player"].apply(get_organization)
|
55 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
56 |
return df
|
57 |
|
58 |
def get_2048_leaderboard(rank_data):
|
59 |
data = rank_data.get("2048", {}).get("results", [])
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
60 |
df = pd.DataFrame(data)
|
|
|
|
|
61 |
df = df.rename(columns={
|
62 |
-
"model": "Player",
|
63 |
-
"score": "Score",
|
64 |
-
"
|
65 |
-
"
|
|
|
66 |
})
|
67 |
-
|
68 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
69 |
return df
|
70 |
|
71 |
def get_candy_leaderboard(rank_data):
|
@@ -73,12 +129,18 @@ def get_candy_leaderboard(rank_data):
|
|
73 |
df = pd.DataFrame(data)
|
74 |
df = df.rename(columns={
|
75 |
"model": "Player",
|
76 |
-
"
|
77 |
-
"
|
78 |
-
"steps": "Steps"
|
79 |
})
|
80 |
df["Organization"] = df["Player"].apply(get_organization)
|
81 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
82 |
return df
|
83 |
|
84 |
def get_tetris_leaderboard(rank_data):
|
@@ -98,11 +160,19 @@ def get_tetris_planning_leaderboard(rank_data):
|
|
98 |
df = pd.DataFrame(data)
|
99 |
df = df.rename(columns={
|
100 |
"model": "Player",
|
101 |
-
"score": "Score",
|
102 |
-
"
|
|
|
103 |
})
|
104 |
df["Organization"] = df["Player"].apply(get_organization)
|
105 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
106 |
return df
|
107 |
|
108 |
def get_ace_attorney_leaderboard(rank_data):
|
@@ -110,14 +180,41 @@ def get_ace_attorney_leaderboard(rank_data):
|
|
110 |
df = pd.DataFrame(data)
|
111 |
df = df.rename(columns={
|
112 |
"model": "Player",
|
113 |
-
"levels_cracked": "Levels Cracked",
|
114 |
-
"lives_left": "Lives Left",
|
115 |
-
"cracked_details": "Progress",
|
116 |
"score": "Score",
|
117 |
-
"
|
|
|
118 |
})
|
119 |
df["Organization"] = df["Player"].apply(get_organization)
|
120 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
121 |
return df
|
122 |
|
123 |
def calculate_rank_and_completeness(rank_data, selected_games):
|
@@ -125,16 +222,18 @@ def calculate_rank_and_completeness(rank_data, selected_games):
|
|
125 |
game_dfs = {}
|
126 |
|
127 |
# Get DataFrames for selected games
|
128 |
-
if selected_games.get("Super Mario Bros"):
|
129 |
-
|
|
|
|
|
130 |
if selected_games.get("Sokoban"):
|
131 |
game_dfs["Sokoban"] = get_sokoban_leaderboard(rank_data)
|
132 |
if selected_games.get("2048"):
|
133 |
game_dfs["2048"] = get_2048_leaderboard(rank_data)
|
134 |
if selected_games.get("Candy Crush"):
|
135 |
game_dfs["Candy Crush"] = get_candy_leaderboard(rank_data)
|
136 |
-
if selected_games.get("Tetris (complete)"):
|
137 |
-
|
138 |
if selected_games.get("Tetris (planning only)"):
|
139 |
game_dfs["Tetris (planning only)"] = get_tetris_planning_leaderboard(rank_data)
|
140 |
if selected_games.get("Ace Attorney"):
|
@@ -163,29 +262,22 @@ def calculate_rank_and_completeness(rank_data, selected_games):
|
|
163 |
if player in df["Player"].values:
|
164 |
games_played += 1
|
165 |
# Get player's score based on game type
|
166 |
-
if game == "Super Mario Bros":
|
|
|
|
|
|
|
167 |
player_score = df[df["Player"] == player]["Score"].iloc[0]
|
168 |
rank = len(df[df["Score"] > player_score]) + 1
|
169 |
elif game == "Sokoban":
|
170 |
-
|
171 |
-
|
172 |
-
try:
|
173 |
-
# Split by semicolon, strip whitespace, filter empty strings, convert to integers
|
174 |
-
levels = [int(x.strip()) for x in levels_str.split(";") if x.strip()]
|
175 |
-
player_score = max(levels) if levels else 0
|
176 |
-
except:
|
177 |
-
player_score = 0
|
178 |
-
# Calculate rank based on maximum level
|
179 |
-
rank = len(df[df["Levels Cracked"].apply(
|
180 |
-
lambda x: max([int(y.strip()) for y in x.split(";") if y.strip()]) > player_score
|
181 |
-
)]) + 1
|
182 |
elif game == "2048":
|
183 |
player_score = df[df["Player"] == player]["Score"].iloc[0]
|
184 |
rank = len(df[df["Score"] > player_score]) + 1
|
185 |
elif game == "Candy Crush":
|
186 |
-
player_score = df[df["Player"] == player]["
|
187 |
-
rank = len(df[df["
|
188 |
-
elif game in ["Tetris (
|
189 |
player_score = df[df["Player"] == player]["Score"].iloc[0]
|
190 |
rank = len(df[df["Score"] > player_score]) + 1
|
191 |
elif game == "Ace Attorney":
|
@@ -197,12 +289,12 @@ def calculate_rank_and_completeness(rank_data, selected_games):
|
|
197 |
else:
|
198 |
player_data[f"{game} Score"] = 'n/a'
|
199 |
|
200 |
-
# Calculate average rank and completeness for sorting
|
201 |
if ranks:
|
202 |
-
player_data["
|
203 |
player_data["Games Played"] = games_played
|
204 |
else:
|
205 |
-
player_data["
|
206 |
player_data["Games Played"] = 0
|
207 |
|
208 |
results.append(player_data)
|
@@ -210,13 +302,13 @@ def calculate_rank_and_completeness(rank_data, selected_games):
|
|
210 |
# Create DataFrame and sort by average rank and completeness
|
211 |
df_results = pd.DataFrame(results)
|
212 |
if not df_results.empty:
|
213 |
-
# Sort by average rank (ascending) and
|
214 |
df_results = df_results.sort_values(
|
215 |
-
by=["
|
216 |
ascending=[True, False]
|
217 |
)
|
218 |
# Drop the sorting columns
|
219 |
-
df_results = df_results.drop(["
|
220 |
|
221 |
return df_results
|
222 |
|
@@ -235,16 +327,18 @@ def get_combined_leaderboard(rank_data, selected_games):
|
|
235 |
game_dfs = {}
|
236 |
|
237 |
# Get DataFrames for selected games
|
238 |
-
if selected_games.get("Super Mario Bros"):
|
239 |
-
|
|
|
|
|
240 |
if selected_games.get("Sokoban"):
|
241 |
game_dfs["Sokoban"] = get_sokoban_leaderboard(rank_data)
|
242 |
if selected_games.get("2048"):
|
243 |
game_dfs["2048"] = get_2048_leaderboard(rank_data)
|
244 |
if selected_games.get("Candy Crush"):
|
245 |
game_dfs["Candy Crush"] = get_candy_leaderboard(rank_data)
|
246 |
-
if selected_games.get("Tetris (complete)"):
|
247 |
-
|
248 |
if selected_games.get("Tetris (planning only)"):
|
249 |
game_dfs["Tetris (planning only)"] = get_tetris_planning_leaderboard(rank_data)
|
250 |
if selected_games.get("Ace Attorney"):
|
@@ -269,21 +363,17 @@ def get_combined_leaderboard(rank_data, selected_games):
|
|
269 |
if game in game_dfs:
|
270 |
df = game_dfs[game]
|
271 |
if player in df["Player"].values:
|
272 |
-
if game == "Super Mario Bros":
|
|
|
|
|
273 |
player_data[f"{game} Score"] = df[df["Player"] == player]["Score"].iloc[0]
|
274 |
elif game == "Sokoban":
|
275 |
-
|
276 |
-
levels_str = df[df["Player"] == player]["Levels Cracked"].iloc[0]
|
277 |
-
try:
|
278 |
-
levels = [int(x.strip()) for x in levels_str.split(";") if x.strip()]
|
279 |
-
player_data[f"{game} Score"] = max(levels) if levels else 0
|
280 |
-
except:
|
281 |
-
player_data[f"{game} Score"] = 0
|
282 |
elif game == "2048":
|
283 |
player_data[f"{game} Score"] = df[df["Player"] == player]["Score"].iloc[0]
|
284 |
elif game == "Candy Crush":
|
285 |
-
player_data[f"{game} Score"] = df[df["Player"] == player]["
|
286 |
-
elif game in ["Tetris (
|
287 |
player_data[f"{game} Score"] = df[df["Player"] == player]["Score"].iloc[0]
|
288 |
elif game == "Ace Attorney":
|
289 |
player_data[f"{game} Score"] = df[df["Player"] == player]["Score"].iloc[0]
|
|
|
4 |
|
5 |
# Define game order
|
6 |
GAME_ORDER = [
|
7 |
+
# "Super Mario Bros", # Commented out
|
8 |
+
"Super Mario Bros (planning only)",
|
9 |
"Sokoban",
|
10 |
"2048",
|
11 |
"Candy Crush",
|
12 |
+
# "Tetris (complete)", # Commented out
|
13 |
"Tetris (planning only)",
|
14 |
"Ace Attorney"
|
15 |
]
|
|
|
42 |
})
|
43 |
df["Organization"] = df["Player"].apply(get_organization)
|
44 |
df = df[["Player", "Organization", "Progress (current/total)", "Score", "Time (s)"]]
|
45 |
+
if "Score" in df.columns:
|
46 |
+
df = df.sort_values("Score", ascending=False)
|
47 |
return df
|
48 |
|
49 |
def get_sokoban_leaderboard(rank_data):
|
50 |
data = rank_data.get("Sokoban", {}).get("results", [])
|
51 |
df = pd.DataFrame(data)
|
52 |
df = df.rename(columns={
|
53 |
+
"model": "Player",
|
54 |
+
"score": "Score",
|
55 |
+
"steps": "Steps",
|
56 |
+
"detail_box_on_target": "Detail Box On Target",
|
57 |
+
"cracked_levels": "Levels Cracked"
|
58 |
})
|
59 |
df["Organization"] = df["Player"].apply(get_organization)
|
60 |
+
|
61 |
+
# Define columns to keep, ensuring 'Score' is present
|
62 |
+
columns_to_keep = ["Player", "Organization", "Score", "Levels Cracked", "Detail Box On Target", "Steps"]
|
63 |
+
# Filter to only columns that actually exist in the DataFrame after renaming
|
64 |
+
df_columns = [col for col in columns_to_keep if col in df.columns]
|
65 |
+
df = df[df_columns]
|
66 |
+
|
67 |
+
if "Score" in df.columns:
|
68 |
+
df["Score"] = pd.to_numeric(df["Score"], errors='coerce')
|
69 |
+
df = df.sort_values("Score", ascending=False)
|
70 |
return df
|
71 |
|
72 |
def get_2048_leaderboard(rank_data):
|
73 |
data = rank_data.get("2048", {}).get("results", [])
|
74 |
+
# --- Diagnostic Print Removed ---
|
75 |
+
# if data and isinstance(data, list) and len(data) > 0 and isinstance(data[0], dict):
|
76 |
+
# print(f"DEBUG_UTILS: Keys in first item of raw data for 2048: {list(data[0].keys())}")
|
77 |
+
# elif not data:
|
78 |
+
# print("DEBUG_UTILS: Raw data for 2048 is empty.")
|
79 |
+
# else:
|
80 |
+
# print("DEBUG_UTILS: Raw data for 2048 is not in the expected list of dicts format.")
|
81 |
+
# --- End Diagnostic Print Removed ---
|
82 |
df = pd.DataFrame(data)
|
83 |
+
# print(f"DEBUG_UTILS: Columns after pd.DataFrame(data): {df.columns.tolist()}") # REMOVED
|
84 |
+
|
85 |
df = df.rename(columns={
|
86 |
+
"model": "Player",
|
87 |
+
"score": "Score", # From new JSON structure
|
88 |
+
"details": "Details", # From new JSON structure
|
89 |
+
"highest_tail": "Highest Tail" # Added new column
|
90 |
+
# Old fields like "steps", "time", "rank" are removed
|
91 |
})
|
92 |
+
# print(f"DEBUG_UTILS: Columns after rename: {df.columns.tolist()}") # REMOVED
|
93 |
+
|
94 |
+
# Ensure 'Player' column exists before applying get_organization
|
95 |
+
if "Player" in df.columns:
|
96 |
+
df["Organization"] = df["Player"].apply(get_organization)
|
97 |
+
else:
|
98 |
+
# Handle case where 'Player' column might be missing after rename (should not happen with current logic)
|
99 |
+
# print("DEBUG_UTILS: 'Player' column not found after rename, skipping Organization.") # REMOVED
|
100 |
+
df["Organization"] = "unknown" # Fallback
|
101 |
+
|
102 |
+
columns_to_keep = ["Player", "Organization", "Score", "Highest Tail", "Details"] # Added "Highest Tail"
|
103 |
+
|
104 |
+
# Defensive check for 'Highest Tail' before filtering - REMOVED
|
105 |
+
# if 'highest_tail' in df.columns and 'Highest Tail' not in df.columns:
|
106 |
+
# print("DEBUG_UTILS: 'highest_tail' (lowercase) found, but 'Highest Tail' (capitalized) not. This indicates a rename issue.")
|
107 |
+
# elif 'Highest Tail' not in df.columns and 'highest_tail' not in df.columns:
|
108 |
+
# print("DEBUG_UTILS: Neither 'Highest Tail' nor 'highest_tail' found in columns before filtering.")
|
109 |
+
|
110 |
+
# df_columns = [col for col in columns_to_keep if col in df.columns] # REMOVED logic that used df_columns
|
111 |
+
# print(f"DEBUG_UTILS: df_columns selected (columns that are in columns_to_keep AND in df.columns): {df_columns}") # REMOVED
|
112 |
+
|
113 |
+
# Ensure all columns in columns_to_keep exist in df, fill with np.nan if not
|
114 |
+
for col_k in columns_to_keep:
|
115 |
+
if col_k not in df.columns:
|
116 |
+
# print(f"DEBUG_UTILS: Column '{col_k}' from columns_to_keep not found in DataFrame. Adding it with NaN values.") # REMOVED
|
117 |
+
df[col_k] = np.nan # Or some other default like 'n/a' if appropriate
|
118 |
+
|
119 |
+
df = df[columns_to_keep] # Use columns_to_keep directly after ensuring they exist
|
120 |
+
# print(f"DEBUG_UTILS: Columns after final selection: {df.columns.tolist()}") # REMOVED
|
121 |
+
|
122 |
+
if "Score" in df.columns:
|
123 |
+
df["Score"] = pd.to_numeric(df["Score"], errors='coerce')
|
124 |
+
df = df.sort_values("Score", ascending=False)
|
125 |
return df
|
126 |
|
127 |
def get_candy_leaderboard(rank_data):
|
|
|
129 |
df = pd.DataFrame(data)
|
130 |
df = df.rename(columns={
|
131 |
"model": "Player",
|
132 |
+
"score": "Score",
|
133 |
+
"details": "Details"
|
|
|
134 |
})
|
135 |
df["Organization"] = df["Player"].apply(get_organization)
|
136 |
+
|
137 |
+
columns_to_keep = ["Player", "Organization", "Score", "Details"]
|
138 |
+
df_columns = [col for col in columns_to_keep if col in df.columns]
|
139 |
+
df = df[df_columns]
|
140 |
+
|
141 |
+
if "Score" in df.columns:
|
142 |
+
df["Score"] = pd.to_numeric(df["Score"], errors='coerce')
|
143 |
+
df = df.sort_values("Score", ascending=False)
|
144 |
return df
|
145 |
|
146 |
def get_tetris_leaderboard(rank_data):
|
|
|
160 |
df = pd.DataFrame(data)
|
161 |
df = df.rename(columns={
|
162 |
"model": "Player",
|
163 |
+
"score": "Score", # From new JSON structure
|
164 |
+
"details": "Details" # From new JSON structure
|
165 |
+
# Old fields like "steps_blocks", "rank" are removed
|
166 |
})
|
167 |
df["Organization"] = df["Player"].apply(get_organization)
|
168 |
+
|
169 |
+
columns_to_keep = ["Player", "Organization", "Score", "Details"]
|
170 |
+
df_columns = [col for col in columns_to_keep if col in df.columns]
|
171 |
+
df = df[df_columns]
|
172 |
+
|
173 |
+
if "Score" in df.columns:
|
174 |
+
df["Score"] = pd.to_numeric(df["Score"], errors='coerce')
|
175 |
+
df = df.sort_values("Score", ascending=False)
|
176 |
return df
|
177 |
|
178 |
def get_ace_attorney_leaderboard(rank_data):
|
|
|
180 |
df = pd.DataFrame(data)
|
181 |
df = df.rename(columns={
|
182 |
"model": "Player",
|
|
|
|
|
|
|
183 |
"score": "Score",
|
184 |
+
"progress": "Progress",
|
185 |
+
"evaluator result": "Evaluator Result"
|
186 |
})
|
187 |
df["Organization"] = df["Player"].apply(get_organization)
|
188 |
+
|
189 |
+
# Define columns to keep, including Evaluator Result
|
190 |
+
columns_to_keep = ["Player", "Organization", "Score", "Progress", "Evaluator Result"]
|
191 |
+
# Filter to only columns that actually exist in the DataFrame after renaming
|
192 |
+
df_columns = [col for col in columns_to_keep if col in df.columns]
|
193 |
+
df = df[df_columns]
|
194 |
+
|
195 |
+
if "Score" in df.columns:
|
196 |
+
df["Score"] = pd.to_numeric(df["Score"], errors='coerce')
|
197 |
+
df = df.sort_values("Score", ascending=False) # Higher score is better
|
198 |
+
return df
|
199 |
+
|
200 |
+
def get_mario_planning_leaderboard(rank_data):
|
201 |
+
data = rank_data.get("Super Mario Bros (planning only)", {}).get("results", [])
|
202 |
+
df = pd.DataFrame(data)
|
203 |
+
df = df.rename(columns={
|
204 |
+
"model": "Player",
|
205 |
+
"score": "Score",
|
206 |
+
"detail_data": "Detail Data",
|
207 |
+
"progress": "Progress"
|
208 |
+
})
|
209 |
+
df["Organization"] = df["Player"].apply(get_organization)
|
210 |
+
# Define columns to keep
|
211 |
+
columns_to_keep = ["Player", "Organization", "Score", "Progress", "Detail Data"]
|
212 |
+
df_columns = [col for col in columns_to_keep if col in df.columns]
|
213 |
+
df = df[df_columns]
|
214 |
+
|
215 |
+
if "Score" in df.columns:
|
216 |
+
df["Score"] = pd.to_numeric(df["Score"], errors='coerce')
|
217 |
+
df = df.sort_values("Score", ascending=False)
|
218 |
return df
|
219 |
|
220 |
def calculate_rank_and_completeness(rank_data, selected_games):
|
|
|
222 |
game_dfs = {}
|
223 |
|
224 |
# Get DataFrames for selected games
|
225 |
+
# if selected_games.get("Super Mario Bros"): # Commented out
|
226 |
+
# game_dfs["Super Mario Bros"] = get_mario_leaderboard(rank_data)
|
227 |
+
if selected_games.get("Super Mario Bros (planning only)"):
|
228 |
+
game_dfs["Super Mario Bros (planning only)"] = get_mario_planning_leaderboard(rank_data)
|
229 |
if selected_games.get("Sokoban"):
|
230 |
game_dfs["Sokoban"] = get_sokoban_leaderboard(rank_data)
|
231 |
if selected_games.get("2048"):
|
232 |
game_dfs["2048"] = get_2048_leaderboard(rank_data)
|
233 |
if selected_games.get("Candy Crush"):
|
234 |
game_dfs["Candy Crush"] = get_candy_leaderboard(rank_data)
|
235 |
+
# if selected_games.get("Tetris (complete)"): # Commented out
|
236 |
+
# game_dfs["Tetris (complete)"] = get_tetris_leaderboard(rank_data)
|
237 |
if selected_games.get("Tetris (planning only)"):
|
238 |
game_dfs["Tetris (planning only)"] = get_tetris_planning_leaderboard(rank_data)
|
239 |
if selected_games.get("Ace Attorney"):
|
|
|
262 |
if player in df["Player"].values:
|
263 |
games_played += 1
|
264 |
# Get player's score based on game type
|
265 |
+
# if game == "Super Mario Bros": # Commented out
|
266 |
+
# player_score = df[df["Player"] == player]["Score"].iloc[0]
|
267 |
+
# rank = len(df[df["Score"] > player_score]) + 1
|
268 |
+
if game == "Super Mario Bros (planning only)":
|
269 |
player_score = df[df["Player"] == player]["Score"].iloc[0]
|
270 |
rank = len(df[df["Score"] > player_score]) + 1
|
271 |
elif game == "Sokoban":
|
272 |
+
player_score = df[df["Player"] == player]["Score"].iloc[0]
|
273 |
+
rank = len(df[df["Score"] > player_score]) + 1
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
274 |
elif game == "2048":
|
275 |
player_score = df[df["Player"] == player]["Score"].iloc[0]
|
276 |
rank = len(df[df["Score"] > player_score]) + 1
|
277 |
elif game == "Candy Crush":
|
278 |
+
player_score = df[df["Player"] == player]["Score"].iloc[0]
|
279 |
+
rank = len(df[df["Score"] > player_score]) + 1
|
280 |
+
elif game in ["Tetris (planning only)"]:
|
281 |
player_score = df[df["Player"] == player]["Score"].iloc[0]
|
282 |
rank = len(df[df["Score"] > player_score]) + 1
|
283 |
elif game == "Ace Attorney":
|
|
|
289 |
else:
|
290 |
player_data[f"{game} Score"] = 'n/a'
|
291 |
|
292 |
+
# Calculate average rank and completeness for sorting
|
293 |
if ranks:
|
294 |
+
player_data["Average Rank"] = round(np.mean(ranks), 2)
|
295 |
player_data["Games Played"] = games_played
|
296 |
else:
|
297 |
+
player_data["Average Rank"] = float('inf')
|
298 |
player_data["Games Played"] = 0
|
299 |
|
300 |
results.append(player_data)
|
|
|
302 |
# Create DataFrame and sort by average rank and completeness
|
303 |
df_results = pd.DataFrame(results)
|
304 |
if not df_results.empty:
|
305 |
+
# Sort by average rank (ascending) and games played (descending)
|
306 |
df_results = df_results.sort_values(
|
307 |
+
by=["Average Rank", "Games Played"],
|
308 |
ascending=[True, False]
|
309 |
)
|
310 |
# Drop the sorting columns
|
311 |
+
df_results = df_results.drop(["Average Rank", "Games Played"], axis=1)
|
312 |
|
313 |
return df_results
|
314 |
|
|
|
327 |
game_dfs = {}
|
328 |
|
329 |
# Get DataFrames for selected games
|
330 |
+
# if selected_games.get("Super Mario Bros"): # Commented out
|
331 |
+
# game_dfs["Super Mario Bros"] = get_mario_leaderboard(rank_data)
|
332 |
+
if selected_games.get("Super Mario Bros (planning only)"):
|
333 |
+
game_dfs["Super Mario Bros (planning only)"] = get_mario_planning_leaderboard(rank_data)
|
334 |
if selected_games.get("Sokoban"):
|
335 |
game_dfs["Sokoban"] = get_sokoban_leaderboard(rank_data)
|
336 |
if selected_games.get("2048"):
|
337 |
game_dfs["2048"] = get_2048_leaderboard(rank_data)
|
338 |
if selected_games.get("Candy Crush"):
|
339 |
game_dfs["Candy Crush"] = get_candy_leaderboard(rank_data)
|
340 |
+
# if selected_games.get("Tetris (complete)"): # Commented out
|
341 |
+
# game_dfs["Tetris (complete)"] = get_tetris_leaderboard(rank_data)
|
342 |
if selected_games.get("Tetris (planning only)"):
|
343 |
game_dfs["Tetris (planning only)"] = get_tetris_planning_leaderboard(rank_data)
|
344 |
if selected_games.get("Ace Attorney"):
|
|
|
363 |
if game in game_dfs:
|
364 |
df = game_dfs[game]
|
365 |
if player in df["Player"].values:
|
366 |
+
# if game == "Super Mario Bros": # Commented out
|
367 |
+
# player_data[f"{game} Score"] = df[df["Player"] == player]["Score"].iloc[0]
|
368 |
+
if game == "Super Mario Bros (planning only)":
|
369 |
player_data[f"{game} Score"] = df[df["Player"] == player]["Score"].iloc[0]
|
370 |
elif game == "Sokoban":
|
371 |
+
player_data[f"{game} Score"] = df[df["Player"] == player]["Score"].iloc[0]
|
|
|
|
|
|
|
|
|
|
|
|
|
372 |
elif game == "2048":
|
373 |
player_data[f"{game} Score"] = df[df["Player"] == player]["Score"].iloc[0]
|
374 |
elif game == "Candy Crush":
|
375 |
+
player_data[f"{game} Score"] = df[df["Player"] == player]["Score"].iloc[0]
|
376 |
+
elif game in ["Tetris (planning only)"]:
|
377 |
player_data[f"{game} Score"] = df[df["Player"] == player]["Score"].iloc[0]
|
378 |
elif game == "Ace Attorney":
|
379 |
player_data[f"{game} Score"] = df[df["Player"] == player]["Score"].iloc[0]
|
rank_data_03_25_2025.json
CHANGED
@@ -3,156 +3,200 @@
|
|
3 |
"runs": 5,
|
4 |
"results": [
|
5 |
{
|
6 |
-
"model": "
|
7 |
-
"score":
|
8 |
"progress": "1-1",
|
9 |
-
"time_s":
|
10 |
-
"rank": 1
|
11 |
},
|
12 |
{
|
13 |
-
"model": "
|
14 |
-
"score":
|
15 |
"progress": "1-1",
|
16 |
-
"time_s":
|
17 |
-
"rank": 2
|
18 |
},
|
19 |
{
|
20 |
"model": "gpt-4o-2024-11-20",
|
21 |
"score": 560,
|
22 |
"progress": "1-1",
|
23 |
-
"time_s": 58.6
|
24 |
-
"rank": 3
|
25 |
},
|
26 |
{
|
27 |
"model": "gemini-2.0-flash",
|
28 |
"score": 320,
|
29 |
"progress": "1-1",
|
30 |
-
"time_s": 51.8
|
31 |
-
"rank": 4
|
32 |
},
|
33 |
{
|
34 |
"model": "claude-3-5-haiku-20241022",
|
35 |
"score": 140,
|
36 |
"progress": "1-1",
|
37 |
-
"time_s": 76.4
|
38 |
-
"rank": 5
|
39 |
},
|
40 |
{
|
41 |
"model": "gpt-4.5-preview-2025-02-27",
|
42 |
"score": 160,
|
43 |
"progress": "1-1",
|
44 |
-
"time_s": 62.8
|
45 |
-
"rank": 6
|
46 |
}
|
47 |
]
|
48 |
},
|
49 |
-
"
|
50 |
-
"runs":
|
51 |
"results": [
|
52 |
{
|
53 |
-
"model": "claude-3-
|
54 |
-
"score":
|
55 |
-
"
|
56 |
-
"
|
57 |
-
"rank": 1
|
58 |
},
|
59 |
{
|
60 |
-
"model": "
|
61 |
-
"score":
|
62 |
-
"
|
63 |
-
"
|
64 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
65 |
},
|
66 |
{
|
67 |
"model": "o1-2024-12-17",
|
68 |
-
"score":
|
69 |
-
"
|
70 |
-
"
|
71 |
-
"rank": 1
|
72 |
},
|
73 |
{
|
74 |
"model": "o3-2025-04-16",
|
75 |
-
"score":
|
76 |
-
"
|
77 |
-
"
|
78 |
-
"rank": 1
|
79 |
},
|
80 |
{
|
81 |
-
"model": "
|
82 |
-
"score":
|
83 |
-
"
|
84 |
-
"
|
85 |
-
"rank": 4
|
86 |
},
|
87 |
{
|
88 |
-
"model": "
|
89 |
-
"score":
|
90 |
-
"
|
91 |
-
"
|
92 |
-
|
93 |
-
|
|
|
|
|
|
|
|
|
94 |
{
|
95 |
-
"model": "
|
96 |
-
"score":
|
97 |
-
"
|
98 |
-
"
|
99 |
-
"rank": 6
|
100 |
},
|
101 |
{
|
102 |
-
"model": "
|
103 |
-
"score":
|
104 |
-
"
|
105 |
-
"
|
106 |
-
"rank": 7
|
107 |
},
|
108 |
{
|
109 |
-
"model": "
|
110 |
-
"score":
|
111 |
-
"
|
112 |
-
"
|
113 |
-
"rank": 8
|
114 |
},
|
115 |
{
|
116 |
-
"model": "gemini-2.5-
|
117 |
-
"score":
|
118 |
-
"
|
119 |
-
"
|
120 |
-
"rank": 9
|
121 |
},
|
122 |
{
|
123 |
-
"model": "
|
124 |
-
"score":
|
125 |
-
"
|
126 |
-
"
|
127 |
-
"rank": 10
|
128 |
},
|
129 |
{
|
130 |
-
"model": "
|
131 |
-
"score":
|
132 |
-
"
|
133 |
-
"
|
134 |
-
"rank": 11
|
135 |
},
|
136 |
{
|
137 |
-
"model": "
|
138 |
-
"score":
|
139 |
-
"
|
140 |
-
"
|
141 |
-
"rank": 13
|
142 |
},
|
143 |
{
|
144 |
-
"model": "gpt-4.
|
145 |
-
"score":
|
146 |
-
"
|
147 |
-
"
|
148 |
-
"rank": 14
|
149 |
},
|
150 |
{
|
151 |
"model": "gpt-4o-2024-11-20",
|
152 |
-
"score":
|
153 |
-
"
|
154 |
-
"
|
155 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
156 |
}
|
157 |
]
|
158 |
},
|
@@ -189,28 +233,74 @@
|
|
189 |
"runs": 3,
|
190 |
"results": [
|
191 |
{
|
192 |
-
"model": "claude-3-
|
193 |
-
"score":
|
194 |
-
"
|
195 |
-
"rank": 1
|
196 |
},
|
197 |
{
|
198 |
-
"model": "claude-3-
|
199 |
-
"score":
|
200 |
-
"
|
201 |
-
"rank": 2
|
202 |
},
|
203 |
{
|
204 |
-
"model": "
|
205 |
-
"score":
|
206 |
-
"
|
207 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
208 |
},
|
209 |
{
|
210 |
"model": "gpt-4o-2024-11-20",
|
211 |
-
"score":
|
212 |
-
"
|
213 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
214 |
}
|
215 |
]
|
216 |
},
|
@@ -218,102 +308,74 @@
|
|
218 |
"runs": 3,
|
219 |
"results": [
|
220 |
{
|
221 |
-
"model": "
|
222 |
-
"
|
223 |
-
"
|
224 |
-
"steps": 25,
|
225 |
-
"rank": 1
|
226 |
},
|
227 |
{
|
228 |
-
"model": "
|
229 |
-
"
|
230 |
-
"
|
231 |
-
"steps": 25,
|
232 |
-
"rank": 2
|
233 |
},
|
234 |
{
|
235 |
-
"model": "
|
236 |
-
"
|
237 |
-
"
|
238 |
-
"steps": 25,
|
239 |
-
"rank": 3
|
240 |
},
|
241 |
{
|
242 |
-
"model": "
|
243 |
-
"
|
244 |
-
"
|
245 |
-
"steps": 25,
|
246 |
-
"rank": 4
|
247 |
},
|
248 |
{
|
249 |
-
"model": "
|
250 |
-
"
|
251 |
-
"
|
252 |
-
"steps": 25,
|
253 |
-
"rank": 5
|
254 |
},
|
255 |
{
|
256 |
-
"model": "
|
257 |
-
"
|
258 |
-
"
|
259 |
-
"steps": 25,
|
260 |
-
"rank": 6
|
261 |
},
|
262 |
{
|
263 |
-
"model": "
|
264 |
-
"
|
265 |
-
"
|
266 |
-
"steps": 25,
|
267 |
-
"rank": 7
|
268 |
},
|
269 |
{
|
270 |
-
"model": "
|
271 |
-
"
|
272 |
-
"
|
273 |
-
"steps": 25,
|
274 |
-
"rank": 8
|
275 |
},
|
276 |
{
|
277 |
-
"model": "
|
278 |
-
"
|
279 |
-
"
|
280 |
-
"steps": 25,
|
281 |
-
"rank": 9
|
282 |
},
|
283 |
{
|
284 |
-
"model": "
|
285 |
-
"
|
286 |
-
"
|
287 |
-
"steps": 25,
|
288 |
-
"rank": 10
|
289 |
},
|
290 |
{
|
291 |
-
"model": "
|
292 |
-
"
|
293 |
-
"
|
294 |
-
"steps": 25,
|
295 |
-
"rank": 11
|
296 |
},
|
297 |
{
|
298 |
-
"model": "
|
299 |
-
"
|
300 |
-
"
|
301 |
-
"steps": 25,
|
302 |
-
"rank": 12
|
303 |
},
|
304 |
{
|
305 |
-
"model": "
|
306 |
-
"
|
307 |
-
"
|
308 |
-
"steps": 25,
|
309 |
-
"rank": 13
|
310 |
},
|
311 |
{
|
312 |
-
"model": "
|
313 |
-
"
|
314 |
-
"
|
315 |
-
"steps": 25,
|
316 |
-
"rank": 14
|
317 |
}
|
318 |
]
|
319 |
},
|
@@ -321,216 +383,177 @@
|
|
321 |
"runs": 3,
|
322 |
"results": [
|
323 |
{
|
324 |
-
"model": "
|
325 |
-
"
|
326 |
-
"
|
327 |
-
"
|
328 |
-
},
|
329 |
-
{
|
330 |
-
"model": "grok-3-mini-beta",
|
331 |
-
"levels_cracked": "3",
|
332 |
-
"steps": "[14, 36, 55, 78]",
|
333 |
-
"rank": 2
|
334 |
},
|
335 |
{
|
336 |
-
"model": "
|
337 |
-
"
|
338 |
-
"
|
339 |
-
"
|
340 |
},
|
341 |
{
|
342 |
-
"model": "
|
343 |
-
"
|
344 |
-
"
|
345 |
-
"
|
346 |
-
},
|
347 |
-
{
|
348 |
-
"model": "gemini-2.5-flash-preview-04-17",
|
349 |
-
"levels_cracked": "2",
|
350 |
-
"steps": "[24, 50, 60]",
|
351 |
-
"rank": 5
|
352 |
},
|
353 |
{
|
354 |
-
"model": "
|
355 |
-
"
|
356 |
-
"
|
357 |
-
"
|
358 |
},
|
359 |
{
|
360 |
-
"model": "
|
361 |
-
"
|
362 |
-
"
|
363 |
-
"
|
364 |
},
|
365 |
{
|
366 |
-
"model": "
|
367 |
-
"
|
368 |
-
"
|
369 |
-
"
|
370 |
},
|
371 |
{
|
372 |
-
"model": "
|
373 |
-
"
|
374 |
-
"
|
375 |
-
"
|
376 |
-
"rank": 9
|
377 |
},
|
378 |
{
|
379 |
-
"model": "
|
380 |
-
"
|
381 |
-
"
|
382 |
-
"
|
383 |
},
|
384 |
{
|
385 |
-
"model": "
|
386 |
-
"
|
387 |
-
"
|
388 |
-
"
|
389 |
},
|
390 |
{
|
391 |
-
"model": "
|
392 |
-
"
|
393 |
-
"
|
394 |
-
"
|
395 |
-
"rank": 12
|
396 |
},
|
397 |
{
|
398 |
-
"model": "
|
399 |
-
"
|
400 |
-
"
|
401 |
-
"
|
402 |
-
"rank": 13
|
403 |
},
|
404 |
{
|
405 |
-
"model": "
|
406 |
-
"
|
407 |
-
"
|
408 |
-
"
|
409 |
},
|
410 |
{
|
411 |
-
"model": "
|
412 |
-
"
|
413 |
-
"
|
414 |
-
"
|
415 |
},
|
416 |
{
|
417 |
-
"model": "
|
418 |
-
"
|
419 |
-
"
|
420 |
-
"
|
421 |
}
|
422 |
]
|
423 |
},
|
424 |
"Ace Attorney": {
|
425 |
-
"runs":
|
426 |
"results": [
|
427 |
{
|
428 |
-
"model": "
|
429 |
-
"
|
430 |
-
"
|
431 |
-
"
|
432 |
-
"rank": 1,
|
433 |
-
"score": 26,
|
434 |
-
"note": "stuck at the end not present evidence"
|
435 |
},
|
436 |
{
|
437 |
-
"model": "
|
438 |
-
"
|
439 |
-
"
|
440 |
-
"
|
441 |
-
"rank": 2,
|
442 |
-
"score": 23,
|
443 |
-
"note": "failed to present evidence"
|
444 |
-
},
|
445 |
-
{
|
446 |
-
"model": "gemini-2.5-pro-exp-03-25",
|
447 |
-
"levels_cracked": "2; 3",
|
448 |
-
"lives_left": "[5,5,0]; [5, 5, 4, 0]",
|
449 |
-
"cracked_details": "4: 0/8",
|
450 |
-
"rank": 3,
|
451 |
-
"score": 20,
|
452 |
-
"note": "failed to present evidence"
|
453 |
-
},
|
454 |
-
{
|
455 |
-
"model": "claude-3-7-sonnet-20250219(thinking)",
|
456 |
-
"levels_cracked": "1; 1",
|
457 |
-
"lives_left": "[3,0]; [5,0]",
|
458 |
-
"cracked_details": "2: 3/9",
|
459 |
-
"rank": 4,
|
460 |
-
"score": 8,
|
461 |
-
"note": "failed to present evidence"
|
462 |
},
|
463 |
{
|
464 |
-
"model": "
|
465 |
-
"
|
466 |
-
"
|
467 |
-
"
|
468 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
469 |
"score": 7,
|
470 |
-
"
|
|
|
471 |
},
|
472 |
{
|
473 |
-
"model": "
|
474 |
-
"
|
475 |
-
"
|
476 |
-
"
|
477 |
-
|
478 |
-
|
479 |
-
"
|
|
|
|
|
|
|
480 |
},
|
481 |
{
|
482 |
"model": "gpt-4.1-2025-04-14",
|
483 |
-
"
|
484 |
-
"
|
485 |
-
"
|
486 |
-
"rank": 7,
|
487 |
-
"score": 6,
|
488 |
-
"note": "stuck in loop"
|
489 |
-
},
|
490 |
-
{
|
491 |
-
"model": "gemini-2.5-flash-preview-04-17",
|
492 |
-
"levels_cracked": "0",
|
493 |
-
"lives_left": "0",
|
494 |
-
"cracked_details": "1: 4/5",
|
495 |
-
"rank": 8,
|
496 |
-
"score": 4,
|
497 |
-
"note": "stuck in the last option section"
|
498 |
},
|
499 |
{
|
500 |
-
"model": "
|
501 |
-
"
|
502 |
-
"
|
503 |
-
"
|
504 |
-
"rank": 9,
|
505 |
-
"score": 4,
|
506 |
-
"note": "stuck in the last option section"
|
507 |
},
|
508 |
{
|
509 |
-
"model": "
|
510 |
-
"
|
511 |
-
"
|
512 |
-
"
|
513 |
-
|
514 |
-
|
515 |
-
"
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
516 |
},
|
517 |
{
|
518 |
"model": "o4-mini-2025-04-16",
|
519 |
-
"
|
520 |
-
"
|
521 |
-
"
|
522 |
-
|
523 |
-
|
524 |
-
"
|
525 |
-
},
|
526 |
-
{
|
527 |
-
"model": "Llama-4-Maverick-17B-128E-Instruct-FP8",
|
528 |
-
"levels_cracked": "0",
|
529 |
-
"lives_left": "0",
|
530 |
-
"cracked_details": "0:0/5",
|
531 |
-
"rank": 13,
|
532 |
"score": 0,
|
533 |
-
"
|
|
|
534 |
}
|
535 |
]
|
536 |
}
|
|
|
3 |
"runs": 5,
|
4 |
"results": [
|
5 |
{
|
6 |
+
"model": "claude-3-7-sonnet-20250219",
|
7 |
+
"score": 710,
|
8 |
"progress": "1-1",
|
9 |
+
"time_s": 64.2
|
|
|
10 |
},
|
11 |
{
|
12 |
+
"model": "gpt-4.1-2025-04-14",
|
13 |
+
"score": 740,
|
14 |
"progress": "1-1",
|
15 |
+
"time_s": 68.6
|
|
|
16 |
},
|
17 |
{
|
18 |
"model": "gpt-4o-2024-11-20",
|
19 |
"score": 560,
|
20 |
"progress": "1-1",
|
21 |
+
"time_s": 58.6
|
|
|
22 |
},
|
23 |
{
|
24 |
"model": "gemini-2.0-flash",
|
25 |
"score": 320,
|
26 |
"progress": "1-1",
|
27 |
+
"time_s": 51.8
|
|
|
28 |
},
|
29 |
{
|
30 |
"model": "claude-3-5-haiku-20241022",
|
31 |
"score": 140,
|
32 |
"progress": "1-1",
|
33 |
+
"time_s": 76.4
|
|
|
34 |
},
|
35 |
{
|
36 |
"model": "gpt-4.5-preview-2025-02-27",
|
37 |
"score": 160,
|
38 |
"progress": "1-1",
|
39 |
+
"time_s": 62.8
|
|
|
40 |
}
|
41 |
]
|
42 |
},
|
43 |
+
"Super Mario Bros (planning only)": {
|
44 |
+
"runs": 3,
|
45 |
"results": [
|
46 |
{
|
47 |
+
"model": "claude-3-5-sonnet-20241022",
|
48 |
+
"score": 1267.7,
|
49 |
+
"detail_data": "709;1532;1562",
|
50 |
+
"progress": "1-1"
|
|
|
51 |
},
|
52 |
{
|
53 |
+
"model": "claude-3-7-sonnet-20250219 (thinking)",
|
54 |
+
"score": 1418.7,
|
55 |
+
"detail_data": "2015;709;1532",
|
56 |
+
"progress": "1-1"
|
57 |
+
},
|
58 |
+
{
|
59 |
+
"model": "gemini-2.5-flash-preview-04-17 (thinking)",
|
60 |
+
"score": 1385.0,
|
61 |
+
"detail_data": "1672;1266;1247",
|
62 |
+
"progress": "1-1"
|
63 |
+
},
|
64 |
+
{
|
65 |
+
"model": "gemini-2.5-pro-preview-05-06 (thinking)",
|
66 |
+
"score": 1498.3,
|
67 |
+
"detail_data": "1561;1271;1663",
|
68 |
+
"progress": "1-1"
|
69 |
+
},
|
70 |
+
{
|
71 |
+
"model": "llama-4-maverick-17b-128e-instruct-fp8",
|
72 |
+
"score": 1468.7,
|
73 |
+
"detail_data": "898;2008;1500",
|
74 |
+
"progress": "1-1"
|
75 |
+
},
|
76 |
+
{
|
77 |
+
"model": "gpt-4.1-2025-04-14",
|
78 |
+
"score": 2126.3,
|
79 |
+
"detail_data": "1531;722;4126",
|
80 |
+
"progress": "1-1"
|
81 |
+
},
|
82 |
+
{
|
83 |
+
"model": "gpt-4o-2024-11-20",
|
84 |
+
"score": 2047.3,
|
85 |
+
"detail_data": "2017;2590;1535",
|
86 |
+
"progress": "1-1"
|
87 |
},
|
88 |
{
|
89 |
"model": "o1-2024-12-17",
|
90 |
+
"score": 855,
|
91 |
+
"detail_data": "855",
|
92 |
+
"progress": "1-1"
|
|
|
93 |
},
|
94 |
{
|
95 |
"model": "o3-2025-04-16",
|
96 |
+
"score": 3445,
|
97 |
+
"detail_data": "3445",
|
98 |
+
"progress": "1-1"
|
|
|
99 |
},
|
100 |
{
|
101 |
+
"model": "o4-mini-2025-04-16",
|
102 |
+
"score": 1448.0,
|
103 |
+
"detail_data": "1525;1263;1556",
|
104 |
+
"progress": "1-1"
|
|
|
105 |
},
|
106 |
{
|
107 |
+
"model": "Random (x30)",
|
108 |
+
"score": 986.97,
|
109 |
+
"detail_data": "986.97",
|
110 |
+
"progress": "1-1"
|
111 |
+
}
|
112 |
+
]
|
113 |
+
},
|
114 |
+
"2048": {
|
115 |
+
"runs": 3,
|
116 |
+
"results": [
|
117 |
{
|
118 |
+
"model": "claude-3-5-sonnet-20241022",
|
119 |
+
"score": 108.2,
|
120 |
+
"details": "1352;2860;1532",
|
121 |
+
"highest_tail": 128
|
|
|
122 |
},
|
123 |
{
|
124 |
+
"model": "claude-3-7-sonnet-20250219 (thinking)",
|
125 |
+
"score": 113.3,
|
126 |
+
"details": "2560;3224;2088",
|
127 |
+
"highest_tail": 256
|
|
|
128 |
},
|
129 |
{
|
130 |
+
"model": "deepseek-r1",
|
131 |
+
"score": 105.2,
|
132 |
+
"details": "700;1240;3680",
|
133 |
+
"highest_tail": 128
|
|
|
134 |
},
|
135 |
{
|
136 |
+
"model": "gemini-2.5-flash-preview-04-17 (thinking)",
|
137 |
+
"score": 106.6,
|
138 |
+
"details": "1304;1316;2472",
|
139 |
+
"highest_tail": 256
|
|
|
140 |
},
|
141 |
{
|
142 |
+
"model": "gemini-2.5-pro-preview-05-06 (thinking)",
|
143 |
+
"score": 117.3,
|
144 |
+
"details": "5300;2400;3060",
|
145 |
+
"highest_tail": 256
|
|
|
146 |
},
|
147 |
{
|
148 |
+
"model": "grok-3-mini-beta (thinking)",
|
149 |
+
"score": 118.6,
|
150 |
+
"details": "6412;2492;3204",
|
151 |
+
"highest_tail": 256
|
|
|
152 |
},
|
153 |
{
|
154 |
+
"model": "llama-4-maverick-17b-128e-instruct-fp8",
|
155 |
+
"score": 106,
|
156 |
+
"details": "1404;1272;2084",
|
157 |
+
"highest_tail": 128
|
|
|
158 |
},
|
159 |
{
|
160 |
+
"model": "gpt-4.1-2025-04-14",
|
161 |
+
"score": 105.7,
|
162 |
+
"details": "1156;2664;1148",
|
163 |
+
"highest_tail": 128
|
|
|
164 |
},
|
165 |
{
|
166 |
"model": "gpt-4o-2024-11-20",
|
167 |
+
"score": 106.7,
|
168 |
+
"details": "1604;1284;2080",
|
169 |
+
"highest_tail": 256
|
170 |
+
},
|
171 |
+
{
|
172 |
+
"model": "o1-2024-12-17",
|
173 |
+
"score": 128.9,
|
174 |
+
"details": "3132;2004;3136",
|
175 |
+
"highest_tail": 512
|
176 |
+
},
|
177 |
+
{
|
178 |
+
"model": "o1-mini-2024-09-12",
|
179 |
+
"score": 114.0,
|
180 |
+
"details": "21;86;37",
|
181 |
+
"highest_tail": 256
|
182 |
+
},
|
183 |
+
{
|
184 |
+
"model": "o3-2025-04-16",
|
185 |
+
"score": 128.0,
|
186 |
+
"details": "7120",
|
187 |
+
"highest_tail": 512
|
188 |
+
},
|
189 |
+
{
|
190 |
+
"model": "o4-mini-2025-04-16",
|
191 |
+
"score": 120.6,
|
192 |
+
"details": "4928;5456;2912",
|
193 |
+
"highest_tail": 256
|
194 |
+
},
|
195 |
+
{
|
196 |
+
"model": "Random (x30)",
|
197 |
+
"score": 100.4,
|
198 |
+
"details": "",
|
199 |
+
"highest_tail": 128
|
200 |
}
|
201 |
]
|
202 |
},
|
|
|
233 |
"runs": 3,
|
234 |
"results": [
|
235 |
{
|
236 |
+
"model": "claude-3-5-sonnet-20241022",
|
237 |
+
"score": 14.7,
|
238 |
+
"details": "16;14;14"
|
|
|
239 |
},
|
240 |
{
|
241 |
+
"model": "claude-3-7-sonnet-20250219 (thinking)",
|
242 |
+
"score": 16.3,
|
243 |
+
"details": "19;15;15"
|
|
|
244 |
},
|
245 |
{
|
246 |
+
"model": "deepseek-r1",
|
247 |
+
"score": 14.3,
|
248 |
+
"details": "15;14;14"
|
249 |
+
},
|
250 |
+
{
|
251 |
+
"model": "gemini-2.5-flash-preview-04-17 (thinking)",
|
252 |
+
"score": 16.3,
|
253 |
+
"details": "20;14;15"
|
254 |
+
},
|
255 |
+
{
|
256 |
+
"model": "gemini-2.5-pro-preview-05-06 (thinking)",
|
257 |
+
"score": 23.3,
|
258 |
+
"details": "23;23;24"
|
259 |
+
},
|
260 |
+
{
|
261 |
+
"model": "grok-3-mini-beta (thinking)",
|
262 |
+
"score": 21.3,
|
263 |
+
"details": "20;15;29"
|
264 |
+
},
|
265 |
+
{
|
266 |
+
"model": "llama-4-maverick-17b-128e-instruct-fp8",
|
267 |
+
"score": 10.3,
|
268 |
+
"details": "9;10;12"
|
269 |
+
},
|
270 |
+
{
|
271 |
+
"model": "gpt-4.1-2025-04-14",
|
272 |
+
"score": 13.7,
|
273 |
+
"details": "13;14;14"
|
274 |
},
|
275 |
{
|
276 |
"model": "gpt-4o-2024-11-20",
|
277 |
+
"score": 14,
|
278 |
+
"details": "18;11;13"
|
279 |
+
},
|
280 |
+
{
|
281 |
+
"model": "o1-2024-12-17",
|
282 |
+
"score": 35,
|
283 |
+
"details": "35"
|
284 |
+
},
|
285 |
+
{
|
286 |
+
"model": "o1-mini-2024-09-12",
|
287 |
+
"score": 11.7,
|
288 |
+
"details": "11;11;13"
|
289 |
+
},
|
290 |
+
{
|
291 |
+
"model": "o3-2025-04-16",
|
292 |
+
"score": 42,
|
293 |
+
"details": "42"
|
294 |
+
},
|
295 |
+
{
|
296 |
+
"model": "o4-mini-2025-04-16",
|
297 |
+
"score": 25.3,
|
298 |
+
"details": "22;35;19"
|
299 |
+
},
|
300 |
+
{
|
301 |
+
"model": "Random (x30)",
|
302 |
+
"score": 10.2,
|
303 |
+
"details": ""
|
304 |
}
|
305 |
]
|
306 |
},
|
|
|
308 |
"runs": 3,
|
309 |
"results": [
|
310 |
{
|
311 |
+
"model": "claude-3-5-sonnet-20241022",
|
312 |
+
"score": 106,
|
313 |
+
"details": "92;165;61"
|
|
|
|
|
314 |
},
|
315 |
{
|
316 |
+
"model": "claude-3-7-sonnet-20250219 (thinking)",
|
317 |
+
"score": 484,
|
318 |
+
"details": "535;428;489"
|
|
|
|
|
319 |
},
|
320 |
{
|
321 |
+
"model": "deepseek-r1",
|
322 |
+
"score": 447.3,
|
323 |
+
"details": "409;436;497"
|
|
|
|
|
324 |
},
|
325 |
{
|
326 |
+
"model": "gemini-2.5-flash-preview-04-17 (thinking)",
|
327 |
+
"score": 334.7,
|
328 |
+
"details": "259;372;373"
|
|
|
|
|
329 |
},
|
330 |
{
|
331 |
+
"model": "gemini-2.5-pro-preview-05-06 (thinking)",
|
332 |
+
"score": 416.3,
|
333 |
+
"details": "411;414;424"
|
|
|
|
|
334 |
},
|
335 |
{
|
336 |
+
"model": "grok-3-mini-beta (thinking)",
|
337 |
+
"score": 254,
|
338 |
+
"details": "299;332;131"
|
|
|
|
|
339 |
},
|
340 |
{
|
341 |
+
"model": "llama-4-maverick-17b-128e-instruct-fp8",
|
342 |
+
"score": 128.7,
|
343 |
+
"details": "67;139;180"
|
|
|
|
|
344 |
},
|
345 |
{
|
346 |
+
"model": "gpt-4.1-2025-04-14",
|
347 |
+
"score": 182,
|
348 |
+
"details": "163;215;168"
|
|
|
|
|
349 |
},
|
350 |
{
|
351 |
+
"model": "gpt-4o-2024-11-20",
|
352 |
+
"score": 147.3,
|
353 |
+
"details": "131;104;207"
|
|
|
|
|
354 |
},
|
355 |
{
|
356 |
+
"model": "o1-2024-12-17",
|
357 |
+
"score": 159,
|
358 |
+
"details": "159"
|
|
|
|
|
359 |
},
|
360 |
{
|
361 |
+
"model": "o1-mini-2024-09-12",
|
362 |
+
"score": 48,
|
363 |
+
"details": "21;86;37"
|
|
|
|
|
364 |
},
|
365 |
{
|
366 |
+
"model": "o3-2025-04-16",
|
367 |
+
"score": 647,
|
368 |
+
"details": "647"
|
|
|
|
|
369 |
},
|
370 |
{
|
371 |
+
"model": "o4-mini-2025-04-16",
|
372 |
+
"score": 487.3,
|
373 |
+
"details": "259;591;612"
|
|
|
|
|
374 |
},
|
375 |
{
|
376 |
+
"model": "Random (x30)",
|
377 |
+
"score": 116.5,
|
378 |
+
"details": ""
|
|
|
|
|
379 |
}
|
380 |
]
|
381 |
},
|
|
|
383 |
"runs": 3,
|
384 |
"results": [
|
385 |
{
|
386 |
+
"model": "claude-3-5-sonnet-20241022",
|
387 |
+
"score": 0,
|
388 |
+
"detail_box_on_target": "0;0;0",
|
389 |
+
"cracked_levels": "0;0;0"
|
|
|
|
|
|
|
|
|
|
|
|
|
390 |
},
|
391 |
{
|
392 |
+
"model": "claude-3-7-sonnet-20250219 (thinking)",
|
393 |
+
"score": 2.33,
|
394 |
+
"detail_box_on_target": "2;4;1",
|
395 |
+
"cracked_levels": "1;2;0"
|
396 |
},
|
397 |
{
|
398 |
+
"model": "deepseek-r1",
|
399 |
+
"score": 1.33,
|
400 |
+
"detail_box_on_target": "2;0;2",
|
401 |
+
"cracked_levels": "1;0;1"
|
|
|
|
|
|
|
|
|
|
|
|
|
402 |
},
|
403 |
{
|
404 |
+
"model": "gemini-2.5-flash-preview-04-17 (thinking)",
|
405 |
+
"score": 1.67,
|
406 |
+
"detail_box_on_target": "3;0;2",
|
407 |
+
"cracked_levels": "2;0;1"
|
408 |
},
|
409 |
{
|
410 |
+
"model": "gemini-2.5-pro-preview-05-06 (thinking)",
|
411 |
+
"score": 4.33,
|
412 |
+
"detail_box_on_target": "4;4;5",
|
413 |
+
"cracked_levels": "2;2;3"
|
414 |
},
|
415 |
{
|
416 |
+
"model": "grok-3-mini-beta (thinking)",
|
417 |
+
"score": 5.67,
|
418 |
+
"detail_box_on_target": "5;6;6",
|
419 |
+
"cracked_levels": "3;3;3"
|
420 |
},
|
421 |
{
|
422 |
+
"model": "llama-4-maverick-17b-128e-instruct-fp8",
|
423 |
+
"score": 0,
|
424 |
+
"detail_box_on_target": "0;0;0",
|
425 |
+
"cracked_levels": "0;0;0"
|
|
|
426 |
},
|
427 |
{
|
428 |
+
"model": "gpt-4.1-2025-04-14",
|
429 |
+
"score": 0,
|
430 |
+
"detail_box_on_target": "0;0;0",
|
431 |
+
"cracked_levels": "0;0;0"
|
432 |
},
|
433 |
{
|
434 |
+
"model": "gpt-4o-2024-11-20",
|
435 |
+
"score": 0,
|
436 |
+
"detail_box_on_target": "0;0;0",
|
437 |
+
"cracked_levels": "0;0;0"
|
438 |
},
|
439 |
{
|
440 |
+
"model": "o1-2024-12-17",
|
441 |
+
"score": 2.33,
|
442 |
+
"detail_box_on_target": "2;2;3",
|
443 |
+
"cracked_levels": "1;1;2"
|
|
|
444 |
},
|
445 |
{
|
446 |
+
"model": "o1-mini-2024-09-12",
|
447 |
+
"score": 1.33,
|
448 |
+
"detail_box_on_target": "1;2;1",
|
449 |
+
"cracked_levels": "0;1;0"
|
|
|
450 |
},
|
451 |
{
|
452 |
+
"model": "o3-2025-04-16",
|
453 |
+
"score": 8,
|
454 |
+
"detail_box_on_target": "10;6",
|
455 |
+
"cracked_levels": "5;3"
|
456 |
},
|
457 |
{
|
458 |
+
"model": "o4-mini-2025-04-16",
|
459 |
+
"score": 5.33,
|
460 |
+
"detail_box_on_target": "4;6;6",
|
461 |
+
"cracked_levels": "2;2;3"
|
462 |
},
|
463 |
{
|
464 |
+
"model": "Random (x30)",
|
465 |
+
"score": 0,
|
466 |
+
"detail_box_on_target": "0,0,0",
|
467 |
+
"cracked_levels": "0,0,0"
|
468 |
}
|
469 |
]
|
470 |
},
|
471 |
"Ace Attorney": {
|
472 |
+
"runs": 1,
|
473 |
"results": [
|
474 |
{
|
475 |
+
"model": "claude-3-5-sonnet-20241022",
|
476 |
+
"score": 2,
|
477 |
+
"progress": "1:2/5",
|
478 |
+
"evaluator result": "1/3"
|
|
|
|
|
|
|
479 |
},
|
480 |
{
|
481 |
+
"model": "claude-3-7-sonnet-20250219 (thinking)",
|
482 |
+
"score": 7,
|
483 |
+
"progress": "2:2/9",
|
484 |
+
"evaluator result": "5/11"
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
485 |
},
|
486 |
{
|
487 |
+
"model": "deepseek-r1",
|
488 |
+
"score": 0,
|
489 |
+
"progress": "0",
|
490 |
+
"evaluator result": "1/5"
|
491 |
+
},
|
492 |
+
{
|
493 |
+
"model": "gemini-2.5-flash-preview-04-17 (thinking)",
|
494 |
+
"score": 4,
|
495 |
+
"progress": "1:4/5",
|
496 |
+
"evaluator result": "1/7"
|
497 |
+
},
|
498 |
+
{
|
499 |
+
"model": "gemini-2.5-pro-preview-05-06 (thinking)",
|
500 |
"score": 7,
|
501 |
+
"progress": "2:2/9",
|
502 |
+
"evaluator result": "2/3"
|
503 |
},
|
504 |
{
|
505 |
+
"model": "grok-3-mini-beta (thinking)",
|
506 |
+
"score": 0,
|
507 |
+
"progress": "0",
|
508 |
+
"evaluator result": "0"
|
509 |
+
},
|
510 |
+
{
|
511 |
+
"model": "llama-4-maverick-17b-128e-instruct-fp8",
|
512 |
+
"score": 0,
|
513 |
+
"progress": "0",
|
514 |
+
"evaluator result": "0"
|
515 |
},
|
516 |
{
|
517 |
"model": "gpt-4.1-2025-04-14",
|
518 |
+
"score": 2,
|
519 |
+
"progress": "1:2/5",
|
520 |
+
"evaluator result": "2/3"
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
521 |
},
|
522 |
{
|
523 |
+
"model": "gpt-4o-2024-11-20",
|
524 |
+
"score": 0,
|
525 |
+
"progress": "0",
|
526 |
+
"evaluator result": "0"
|
|
|
|
|
|
|
527 |
},
|
528 |
{
|
529 |
+
"model": "o1-2024-12-17",
|
530 |
+
"score": 16,
|
531 |
+
"progress": "3: 2/8",
|
532 |
+
"evaluator result": "6/11"
|
533 |
+
},
|
534 |
+
{
|
535 |
+
"model": "o1-mini-2024-09-12",
|
536 |
+
"score": 0,
|
537 |
+
"progress": "0",
|
538 |
+
"evaluator result": "1/5"
|
539 |
+
},
|
540 |
+
{
|
541 |
+
"model": "o3-2025-04-16",
|
542 |
+
"score": 16,
|
543 |
+
"progress": "3: 2/8",
|
544 |
+
"evaluator result": "1/2"
|
545 |
},
|
546 |
{
|
547 |
"model": "o4-mini-2025-04-16",
|
548 |
+
"score": 4,
|
549 |
+
"progress": "1:4/5",
|
550 |
+
"evaluator result": "2/5"
|
551 |
+
},
|
552 |
+
{
|
553 |
+
"model": "Random (x30)",
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
554 |
"score": 0,
|
555 |
+
"progress": "0",
|
556 |
+
"evaluator result": "0"
|
557 |
}
|
558 |
]
|
559 |
}
|