Spaces:
Sleeping
Sleeping
Update
Browse files- app.py +91 -0
- requirements.txt +9 -0
app.py
ADDED
|
@@ -0,0 +1,91 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import gradio as gr
|
| 2 |
+
import torch
|
| 3 |
+
from torch import Tensor, nn
|
| 4 |
+
from transformers import (CLIPTextModel, CLIPTokenizer, T5EncoderModel,
|
| 5 |
+
T5Tokenizer)
|
| 6 |
+
import spaces
|
| 7 |
+
import numpy as np
|
| 8 |
+
import io
|
| 9 |
+
import base64
|
| 10 |
+
|
| 11 |
+
class HFEmbedder(nn.Module):
|
| 12 |
+
def __init__(self, version: str, max_length: int, **hf_kwargs):
|
| 13 |
+
super().__init__()
|
| 14 |
+
self.is_clip = version.startswith("openai")
|
| 15 |
+
self.max_length = max_length
|
| 16 |
+
self.output_key = "pooler_output" if self.is_clip else "last_hidden_state"
|
| 17 |
+
|
| 18 |
+
if self.is_clip:
|
| 19 |
+
self.tokenizer: CLIPTokenizer = CLIPTokenizer.from_pretrained(version, max_length=max_length)
|
| 20 |
+
self.hf_module: CLIPTextModel = CLIPTextModel.from_pretrained(version, **hf_kwargs)
|
| 21 |
+
else:
|
| 22 |
+
self.tokenizer: T5Tokenizer = T5Tokenizer.from_pretrained(version, max_length=max_length)
|
| 23 |
+
self.hf_module: T5EncoderModel = T5EncoderModel.from_pretrained(version, **hf_kwargs)
|
| 24 |
+
|
| 25 |
+
self.hf_module = self.hf_module.eval().requires_grad_(False)
|
| 26 |
+
|
| 27 |
+
def forward(self, text: list[str]) -> Tensor:
|
| 28 |
+
batch_encoding = self.tokenizer(
|
| 29 |
+
text,
|
| 30 |
+
truncation=True,
|
| 31 |
+
max_length=self.max_length,
|
| 32 |
+
return_length=False,
|
| 33 |
+
return_overflowing_tokens=False,
|
| 34 |
+
padding="max_length",
|
| 35 |
+
return_tensors="pt",
|
| 36 |
+
)
|
| 37 |
+
|
| 38 |
+
outputs = self.hf_module(
|
| 39 |
+
input_ids=batch_encoding["input_ids"].to(self.hf_module.device),
|
| 40 |
+
attention_mask=None,
|
| 41 |
+
output_hidden_states=False,
|
| 42 |
+
)
|
| 43 |
+
return outputs[self.output_key]
|
| 44 |
+
|
| 45 |
+
|
| 46 |
+
|
| 47 |
+
def load_t5(device: str | torch.device = "cuda", max_length: int = 512) -> HFEmbedder:
|
| 48 |
+
# max length 64, 128, 256 and 512 should work (if your sequence is short enough)
|
| 49 |
+
return HFEmbedder("lnyan/t5-v1_1-xxl-encoder", max_length=max_length, torch_dtype=torch.bfloat16).to("cuda")
|
| 50 |
+
|
| 51 |
+
|
| 52 |
+
def load_clip(device: str | torch.device = "cuda") -> HFEmbedder:
|
| 53 |
+
return HFEmbedder("openai/clip-vit-large-patch14", max_length=77, torch_dtype=torch.bfloat16).to("cuda")
|
| 54 |
+
|
| 55 |
+
@spaces.GPU(duration=20)
|
| 56 |
+
def load_encoders():
|
| 57 |
+
is_schnell = True
|
| 58 |
+
t5 = load_t5("cuda", max_length=256 if is_schnell else 512)
|
| 59 |
+
clip = load_clip("cuda")
|
| 60 |
+
return t5, clip
|
| 61 |
+
|
| 62 |
+
import numpy as np
|
| 63 |
+
def b64(txt,vec):
|
| 64 |
+
buffer = io.BytesIO()
|
| 65 |
+
np.savez_compressed(buffer, txt=txt, vec=vec)
|
| 66 |
+
buffer.seek(0)
|
| 67 |
+
encoded = base64.b64encode(buffer.getvalue()).decode('utf-8')
|
| 68 |
+
return encoded
|
| 69 |
+
|
| 70 |
+
t5,clip=load_encoders()
|
| 71 |
+
@spaces.GPU(duration=10)
|
| 72 |
+
def convert(prompt):
|
| 73 |
+
if isinstance(prompt, str):
|
| 74 |
+
prompt = [prompt]
|
| 75 |
+
txt = t5(prompt)
|
| 76 |
+
vec = clip(prompt)
|
| 77 |
+
return b64(txt.cpu().numpy(),vec.cpu().numpy())
|
| 78 |
+
|
| 79 |
+
with gr.Blocks() as demo:
|
| 80 |
+
gr.Markdown("""A workaround for flux-flax to fit into 40G VRAM""")
|
| 81 |
+
with gr.Row():
|
| 82 |
+
with gr.Column():
|
| 83 |
+
prompt = gr.Textbox(label="prompt")
|
| 84 |
+
convert_btn = gr.Button(value="Convert")
|
| 85 |
+
with gr.Column():
|
| 86 |
+
output = gr.Textbox(label="output")
|
| 87 |
+
|
| 88 |
+
convert_btn.click(convert, inputs=prompt, outputs=output, api_name="convert")
|
| 89 |
+
|
| 90 |
+
|
| 91 |
+
demo.launch()
|
requirements.txt
ADDED
|
@@ -0,0 +1,9 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
torch
|
| 2 |
+
torchvision
|
| 3 |
+
opencv-python-headless
|
| 4 |
+
einops
|
| 5 |
+
huggingface_hub
|
| 6 |
+
transformers
|
| 7 |
+
tokenizers
|
| 8 |
+
sentencepiece
|
| 9 |
+
invisible-watermark
|