Spaces:
Sleeping
Sleeping
# Import necessary libraries and load the model | |
import gradio as gr | |
from gradio.layouts import Column, Row | |
import torch | |
import numpy as np | |
from PIL import Image | |
from torchvision import transforms | |
from unet import UNet # Assuming UNet is the model class | |
MEAN = np.array([0.4732661 , 0.44874457, 0.3948762 ], dtype=np.float32) | |
STD = np.array([0.22674961, 0.22012031, 0.2238305 ], dtype=np.float32) | |
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu') | |
model = UNet(in_chns=3, class_num=2) # Initialize your model | |
model.load_state_dict(torch.load('unet_model.pth', map_location=device)) | |
model = model.to(device) | |
model.eval() | |
# Define your examples | |
examples = [ | |
["examples/image_1.jpg"], | |
["examples/image_2.jpg"], | |
["examples/image_3.jpg"] | |
] | |
# Define the segmentation function | |
def segment(img): | |
img = Image.fromarray(img.astype('uint8'), 'RGB') | |
original_size = img.size # Store the original size | |
img = img.resize((224, 224), Image.BILINEAR) | |
img = transforms.ToTensor()(img) | |
for i in range(3): | |
img[:, :, i] -= float(MEAN[i]) | |
for i in range(3): | |
img[:, :, i] /= float(STD[i]) | |
img = img.unsqueeze(0).to(device) | |
with torch.no_grad(): | |
output = model(img) | |
output = torch.argmax(torch.softmax(output, dim=1), dim=1).squeeze().cpu().numpy() | |
# Resize the mask back to the original image size | |
output = Image.fromarray(output.astype('uint8')).resize(original_size, resample=Image.NEAREST) | |
# Convert the PIL Image back to a numpy array | |
output = np.array(output) | |
binary_mask = np.zeros_like(output) | |
binary_mask[output > 0] = 255 | |
return binary_mask | |
gr.Button('hhhhh') | |
# Create a Gradio interface | |
demo = gr.Interface(fn=segment, | |
inputs="image", | |
outputs="image", | |
title="<p>S<sup>2</sup>ME: Spatial-Spectral Mutual Teaching and Ensemble Learning</p><p>for Scribble-supervised Polyp Segmentation</p>", | |
description="<p>MICCAI 2023, the 26th International Conference on Medical Image Computing and Computer Assisted Intervention</p><p>An Wang, Mengya Xu, Yang Zhang, Mobarakol Islam, and Hongliang Ren</p>", | |
allow_flagging=False, | |
examples=examples) # Add your examples here | |
# Launch the interface | |
demo.launch() | |