File size: 11,788 Bytes
c885400
f4dcd5d
d581a83
0ce1d0f
d581a83
 
e4fe643
d581a83
 
c885400
0ce1d0f
c885400
d581a83
 
 
 
 
 
 
c885400
d581a83
 
 
c885400
d581a83
 
 
 
0ce1d0f
 
 
4df5a3d
0ce1d0f
d581a83
 
0ce1d0f
d581a83
 
 
 
 
 
0ce1d0f
d581a83
 
c885400
 
 
 
 
d581a83
 
c885400
 
d581a83
c885400
 
0ce1d0f
d581a83
 
 
 
c885400
0ce1d0f
d581a83
 
 
 
 
 
c885400
d581a83
 
 
 
f4dcd5d
0ce1d0f
 
 
d581a83
 
0ce1d0f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
f4dcd5d
4df5a3d
c885400
0ce1d0f
f4dcd5d
 
0ce1d0f
 
f4dcd5d
 
0ce1d0f
 
 
 
 
f4dcd5d
 
 
0ce1d0f
 
 
 
 
 
f4dcd5d
 
0ce1d0f
 
 
 
 
 
 
 
 
f4dcd5d
 
0ce1d0f
 
f4dcd5d
 
0ce1d0f
f4dcd5d
 
0ce1d0f
 
f4dcd5d
0ce1d0f
 
f4dcd5d
 
0ce1d0f
f4dcd5d
 
0ce1d0f
 
 
 
 
 
 
 
f4dcd5d
 
0ce1d0f
f4dcd5d
 
 
0ce1d0f
 
f4dcd5d
 
 
 
 
 
 
0ce1d0f
 
 
 
 
 
 
 
 
 
 
4df5a3d
 
 
 
0ce1d0f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
f4dcd5d
 
4df5a3d
f4dcd5d
 
 
0ce1d0f
 
 
 
4df5a3d
0ce1d0f
 
4df5a3d
f4dcd5d
 
 
 
 
0ce1d0f
 
 
 
 
 
 
 
f4dcd5d
 
 
 
 
0ce1d0f
 
 
f4dcd5d
 
 
 
 
0ce1d0f
f4dcd5d
0ce1d0f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
f4dcd5d
0ce1d0f
4df5a3d
0ce1d0f
 
f4dcd5d
 
0ce1d0f
 
 
 
 
 
 
 
 
f4dcd5d
 
0ce1d0f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
f4dcd5d
 
4df5a3d
 
 
0ce1d0f
4df5a3d
 
 
 
 
 
f4dcd5d
4df5a3d
 
 
 
d581a83
0ce1d0f
4df5a3d
0ce1d0f
 
 
 
4df5a3d
0ce1d0f
4df5a3d
f4dcd5d
c885400
f4dcd5d
c885400
f4dcd5d
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
import gradio as gr
import pandas as pd
import plotly.express as px
import plotly.graph_objects as go
import shutil
import os
import torch
from huggingface_hub import hf_hub_download
from importlib import import_module

# Load inference.py and model
repo_id = "logasanjeev/goemotions-bert"
local_file = hf_hub_download(repo_id=repo_id, filename="inference.py")
print("Downloaded inference.py successfully!")

current_dir = os.getcwd()
destination = os.path.join(current_dir, "inference.py")
shutil.copy(local_file, destination)
print("Copied inference.py to current directory!")

inference_module = import_module("inference")
predict_emotions = inference_module.predict_emotions
print("Imported predict_emotions successfully!")

_, _ = predict_emotions("dummy text")
emotion_labels = inference_module.EMOTION_LABELS
default_thresholds = inference_module.THRESHOLDS

# Prediction function with export capability
def predict_emotions_with_details(text, confidence_threshold=0.0, chart_type="bar"):
    if not text.strip():
        return "Please enter some text.", "", "", None, None, False
    
    predictions_str, processed_text = predict_emotions(text)
    
    # Parse predictions
    predictions = []
    if predictions_str != "No emotions predicted.":
        for line in predictions_str.split("\n"):
            emotion, confidence = line.split(": ")
            predictions.append((emotion, float(confidence)))
    
    # Get raw logits for all emotions
    encodings = inference_module.TOKENIZER(
        processed_text,
        padding='max_length',
        truncation=True,
        max_length=128,
        return_tensors='pt'
    )
    input_ids = encodings['input_ids'].to(inference_module.DEVICE)
    attention_mask = encodings['attention_mask'].to(inference_module.DEVICE)
    
    with torch.no_grad():
        outputs = inference_module.MODEL(input_ids, attention_mask=attention_mask)
        logits = torch.sigmoid(outputs.logits).cpu().numpy()[0]
    
    # All emotions for top 5
    all_emotions = [(emotion_labels[i], round(logit, 4)) for i, logit in enumerate(logits)]
    all_emotions.sort(key=lambda x: x[1], reverse=True)
    top_5_emotions = all_emotions[:5]
    top_5_output = "\n".join([f"{emotion}: {confidence:.4f}" for emotion, confidence in top_5_emotions])
    
    # Filter predictions based on threshold
    filtered_predictions = []
    for emotion, confidence in predictions:
        thresh = default_thresholds[emotion_labels.index(emotion)]
        adjusted_thresh = max(thresh, confidence_threshold)
        if confidence >= adjusted_thresh:
            filtered_predictions.append((emotion, confidence))
    
    if not filtered_predictions:
        thresholded_output = "No emotions predicted above thresholds."
    else:
        thresholded_output = "\n".join([f"{emotion}: {confidence:.4f}" for emotion, confidence in filtered_predictions])
    
    # Create visualization
    fig = None
    df_export = None
    if filtered_predictions:
        df = pd.DataFrame(filtered_predictions, columns=["Emotion", "Confidence"])
        df_export = df.copy()
        
        if chart_type == "bar":
            fig = px.bar(
                df,
                x="Emotion",
                y="Confidence",
                color="Emotion",
                text="Confidence",
                title="Emotion Confidence Levels (Above Threshold)",
                height=400,
                color_discrete_sequence=px.colors.qualitative.Plotly
            )
            fig.update_traces(texttemplate='%{text:.2f}', textposition='auto')
            fig.update_layout(showlegend=False, margin=dict(t=40, b=40), xaxis_title="", yaxis_title="Confidence")
        else:  # pie chart
            fig = px.pie(
                df,
                names="Emotion",
                values="Confidence",
                title="Emotion Confidence Distribution (Above Threshold)",
                height=400,
                color_discrete_sequence=px.colors.qualitative.Plotly
            )
            fig.update_traces(textinfo='percent+label', pull=[0.1] + [0] * (len(df) - 1))
            fig.update_layout(margin=dict(t=40, b=40))
    
    return processed_text, thresholded_output, top_5_output, fig, df_export, True

# Custom CSS for enhanced styling
custom_css = """
body {
    font-family: 'Inter', -apple-system, BlinkMacSystemFont, sans-serif;
    background-color: #f5f7fa;
}
.gr-panel {
    border-radius: 16px;
    box-shadow: 0 6px 20px rgba(0,0,0,0.08);
    background: white;
    padding: 20px;
    margin-bottom: 20px;
}
.gr-button {
    border-radius: 8px;
    padding: 12px 24px;
    font-weight: 600;
    transition: all 0.3s ease;
}
.gr-button-primary {
    background: #4a90e2;
    color: white;
}
.gr-button-primary:hover {
    background: #357abd;
}
.gr-button-secondary {
    background: #e4e7eb;
    color: #333;
}
.gr-button-secondary:hover {
    background: #d1d5db;
}
#title {
    font-size: 2.8em;
    font-weight: 700;
    color: #1a3c6e;
    text-align: center;
    margin-bottom: 10px;
}
#description {
    font-size: 1.2em;
    color: #555;
    text-align: center;
    max-width: 800px;
    margin: 0 auto 30px auto;
}
#theme-toggle {
    position: fixed;
    top: 20px;
    right: 20px;
    background: none;
    border: none;
    font-size: 1.5em;
    cursor: pointer;
    transition: transform 0.3s;
}
#theme-toggle:hover {
    transform: scale(1.2);
}
.dark-mode {
    background: #1e2a44;
    color: #e0e0e0;
}
.dark-mode .gr-panel {
    background: #2a3a5a;
    box-shadow: 0 6px 20px rgba(0,0,0,0.2);
}
.dark-mode #title {
    color: #66b3ff;
}
.dark-mode #description {
    color: #b0b0b0;
}
.dark-mode .gr-button-secondary {
    background: #3a4a6a;
    color: #e0e0e0;
}
.dark-mode .gr-button-secondary:hover {
    background: #4a5a7a;
}
#loading {
    font-style: italic;
    color: #888;
    text-align: center;
    display: none;
}
#loading.visible {
    display: block;
}
#examples-title {
    font-size: 1.5em;
    font-weight: 600;
    color: #1a3c6e;
    margin-bottom: 10px;
}
.dark-mode #examples-title {
    color: #66b3ff;
}
footer {
    text-align: center;
    margin-top: 40px;
    padding: 20px;
    font-size: 0.9em;
    color: #666;
}
footer a {
    color: #4a90e2;
    text-decoration: none;
}
footer a:hover {
    text-decoration: underline;
}
.dark-mode footer {
    color: #b0b0b0;
}
"""

# JavaScript for theme toggle
theme_js = """
function toggleTheme() {
    document.body.classList.toggle('dark-mode');
    const toggleBtn = document.getElementById('theme-toggle');
    toggleBtn.innerHTML = document.body.classList.contains('dark-mode') ? '☀️' : '🌙';
}
function showLoading() {
    document.getElementById('loading').classList.add('visible');
}
function hideLoading() {
    document.getElementById('loading').classList.remove('visible');
}
"""

# Gradio Blocks UI
with gr.Blocks(css=custom_css) as demo:
    # Theme toggle button
    gr.HTML(
        """
        <button id='theme-toggle' onclick='toggleTheme()'>🌙</button>
        <script>{}</script>
        """.format(theme_js)
    )
    
    # Header
    gr.Markdown("<div id='title'>GoEmotions BERT Classifier</div>", elem_id="title")
    gr.Markdown(
        """
        <div id='description'>
        Predict emotions from text using a fine-tuned BERT-base model on the GoEmotions dataset. 
        Detect 28 emotions with optimized thresholds (Micro F1: 0.6006). 
        View preprocessed text, top 5 emotions, and thresholded predictions with interactive visualizations!
        </div>
        """,
        elem_id="description"
    )
    
    # Main content
    with gr.Row():
        with gr.Column(scale=1):
            # Input Section
            with gr.Group():
                gr.Markdown("### Input Text")
                text_input = gr.Textbox(
                    label="Enter Your Text",
                    placeholder="Type something like 'I’m just chilling today'...",
                    lines=3,
                    show_label=False
                )
                confidence_slider = gr.Slider(
                    minimum=0.0,
                    maximum=0.9,
                    value=0.0,
                    step=0.05,
                    label="Minimum Confidence Threshold",
                    info="Filter predictions below this confidence level (default thresholds still apply)"
                )
                chart_type = gr.Radio(
                    choices=["bar", "pie"],
                    value="bar",
                    label="Chart Type",
                    info="Choose how to visualize the emotion confidences"
                )
                with gr.Row():
                    submit_btn = gr.Button("Predict Emotions", variant="primary")
                    reset_btn = gr.Button("Reset", variant="secondary")
    
    # Loading indicator
    loading_indicator = gr.HTML("<div id='loading'>Predicting emotions, please wait...</div>")
    
    # Output Section
    with gr.Row():
        with gr.Column(scale=1):
            with gr.Group():
                gr.Markdown("### Results")
                processed_text_output = gr.Textbox(label="Preprocessed Text", lines=2, interactive=False)
                thresholded_output = gr.Textbox(label="Predicted Emotions (Above Threshold)", lines=5, interactive=False)
                top_5_output = gr.Textbox(label="Top 5 Emotions (Regardless of Threshold)", lines=5, interactive=False)
                output_plot = gr.Plot(label="Emotion Confidence Visualization (Above Threshold)")
    
    # Export predictions
    export_btn = gr.File(label="Download Predictions as CSV", visible=False)
    
    # Example carousel
    with gr.Group():
        gr.Markdown("<div id='examples-title'>Example Texts</div>", elem_id="examples-title")
        examples = gr.Examples(
            examples=[
                ["I’m just chilling today.", "Neutral Example"],
                ["Thank you for saving my life!", "Gratitude Example"],
                ["I’m nervous about my exam tomorrow.", "Nervousness Example"],
                ["I love my new puppy so much!", "Love Example"],
                ["I’m so relieved the storm passed.", "Relief Example"]
            ],
            inputs=[text_input],
            label="",
            examples_per_page=3
        )
    
    # Footer
    gr.HTML(
        """
        <footer>
            Built with ❤️ by logasanjeev | 
            <a href="https://huggingface.co/logasanjeev/goemotions-bert">Model Card</a> | 
            <a href="https://www.kaggle.com/code/ravindranlogasanjeev/evaluation-logasanjeev-goemotions-bert/notebook">Kaggle Notebook</a> | 
            <a href="https://github.com/logasanjeev">GitHub</a>
        </footer>
        """
    )
    
    # State to manage loading visibility
    loading_state = gr.State(value=False)
    
    # Bind predictions with loading spinner
    def start_loading():
        return True
    
    def stop_loading(processed_text, thresholded_output, top_5_output, fig, df_export, loading_state):
        return processed_text, thresholded_output, top_5_output, fig, df_export, False
    
    submit_btn.click(
        fn=start_loading,
        inputs=[],
        outputs=[loading_state]
    ).then(
        fn=predict_emotions_with_details,
        inputs=[text_input, confidence_slider, chart_type],
        outputs=[processed_text_output, thresholded_output, top_5_output, output_plot, export_btn, loading_state]
    )
    
    # Reset functionality
    reset_btn.click(
        fn=lambda: ("", "", "", None, None, False),
        inputs=[],
        outputs=[text_input, processed_text_output, thresholded_output, top_5_output, output_plot, export_btn, loading_state]
    )

# Launch
if __name__ == "__main__":
    demo.launch()