File size: 6,992 Bytes
c885400 f4dcd5d d581a83 e4fe643 d581a83 c885400 0ce1d0f c885400 d581a83 c885400 d581a83 c885400 d581a83 b5fc4a7 0ce1d0f b5fc4a7 0ce1d0f d581a83 0ce1d0f d581a83 b5fc4a7 d581a83 c885400 d581a83 c885400 d581a83 c885400 0ce1d0f d581a83 c885400 d581a83 f4dcd5d b5fc4a7 0ce1d0f d581a83 b5fc4a7 f4dcd5d b5fc4a7 c885400 b5fc4a7 f4dcd5d b5fc4a7 f4dcd5d b5fc4a7 0ce1d0f b5fc4a7 f4dcd5d b5fc4a7 0ce1d0f f4dcd5d b5fc4a7 f4dcd5d b5fc4a7 0ce1d0f f4dcd5d b5fc4a7 f4dcd5d 0ce1d0f f4dcd5d b5fc4a7 0ce1d0f b5fc4a7 0ce1d0f b5fc4a7 0ce1d0f b5fc4a7 0ce1d0f f4dcd5d b5fc4a7 f4dcd5d b5fc4a7 f4dcd5d b5fc4a7 0ce1d0f b5fc4a7 f4dcd5d 0ce1d0f b5fc4a7 0ce1d0f b5fc4a7 0ce1d0f b5fc4a7 0ce1d0f b5fc4a7 0ce1d0f b5fc4a7 0ce1d0f f4dcd5d b5fc4a7 f4dcd5d d581a83 b5fc4a7 f4dcd5d c885400 f4dcd5d c885400 f4dcd5d |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 |
import gradio as gr
import pandas as pd
import plotly.express as px
import shutil
import os
import torch
from huggingface_hub import hf_hub_download
from importlib import import_module
# Load inference.py and model
repo_id = "logasanjeev/goemotions-bert"
local_file = hf_hub_download(repo_id=repo_id, filename="inference.py")
print("Downloaded inference.py successfully!")
current_dir = os.getcwd()
destination = os.path.join(current_dir, "inference.py")
shutil.copy(local_file, destination)
print("Copied inference.py to current directory!")
inference_module = import_module("inference")
predict_emotions = inference_module.predict_emotions
print("Imported predict_emotions successfully!")
_, _ = predict_emotions("dummy text")
emotion_labels = inference_module.EMOTION_LABELS
default_thresholds = inference_module.THRESHOLDS
# Prediction function (simplified, no export)
def predict_emotions_with_details(text, confidence_threshold=0.0):
if not text.strip():
return "Please enter some text.", "", None
predictions_str, processed_text = predict_emotions(text)
# Parse predictions
predictions = []
if predictions_str != "No emotions predicted.":
for line in predictions_str.split("\n"):
emotion, confidence = line.split(": ")
predictions.append((emotion, float(confidence)))
# Get raw logits for top 5 (though not displayed in this simplified version)
encodings = inference_module.TOKENIZER(
processed_text,
padding='max_length',
truncation=True,
max_length=128,
return_tensors='pt'
)
input_ids = encodings['input_ids'].to(inference_module.DEVICE)
attention_mask = encodings['attention_mask'].to(inference_module.DEVICE)
with torch.no_grad():
outputs = inference_module.MODEL(input_ids, attention_mask=attention_mask)
logits = torch.sigmoid(outputs.logits).cpu().numpy()[0]
# Filter predictions based on threshold
filtered_predictions = []
for emotion, confidence in predictions:
thresh = default_thresholds[emotion_labels.index(emotion)]
adjusted_thresh = max(thresh, confidence_threshold)
if confidence >= adjusted_thresh:
filtered_predictions.append((emotion, confidence))
if not filtered_predictions:
thresholded_output = "No emotions predicted above thresholds."
else:
thresholded_output = "\n".join([f"{emotion}: {confidence:.4f}" for emotion, confidence in filtered_predictions])
# Create bar chart
fig = None
if filtered_predictions:
df = pd.DataFrame(filtered_predictions, columns=["Emotion", "Confidence"])
fig = px.bar(
df,
x="Emotion",
y="Confidence",
color="Emotion",
text="Confidence",
title="Emotion Confidence Levels",
height=300,
color_discrete_sequence=px.colors.qualitative.Pastel
)
fig.update_traces(texttemplate='%{text:.2f}', textposition='auto')
fig.update_layout(showlegend=False, margin=dict(t=40, b=40), xaxis_title="", yaxis_title="Confidence")
return processed_text, thresholded_output, fig
# Simplified CSS
custom_css = """
body {
font-family: 'Arial', sans-serif;
background-color: #f9f9f9;
}
.gr-panel {
border-radius: 8px;
box-shadow: 0 2px 10px rgba(0,0,0,0.05);
background: white;
padding: 15px;
margin-bottom: 15px;
}
.gr-button {
border-radius: 6px;
padding: 10px 20px;
font-weight: 500;
background: #4a90e2;
color: white;
transition: background 0.3s ease;
}
.gr-button:hover {
background: #357abd;
}
#title {
font-size: 2.2em;
font-weight: 600;
color: #333;
text-align: center;
margin-bottom: 10px;
}
#description {
font-size: 1.1em;
color: #666;
text-align: center;
max-width: 600px;
margin: 0 auto 20px auto;
}
#examples-title {
font-size: 1.3em;
font-weight: 500;
color: #333;
margin-bottom: 10px;
}
footer {
text-align: center;
margin-top: 30px;
padding: 15px;
font-size: 0.9em;
color: #666;
}
footer a {
color: #4a90e2;
text-decoration: none;
}
footer a:hover {
text-decoration: underline;
}
"""
# Gradio Blocks UI (Simplified)
with gr.Blocks(css=custom_css) as demo:
# Header
gr.Markdown("<div id='title'>GoEmotions BERT Classifier</div>", elem_id="title")
gr.Markdown(
"""
<div id='description'>
Predict emotions from text using a fine-tuned BERT model.
Enter your text below to see the detected emotions and their confidence scores.
</div>
""",
elem_id="description"
)
# Input Section
with gr.Group():
text_input = gr.Textbox(
label="Enter Your Text",
placeholder="Type something like 'Iβm just chilling today'...",
lines=2,
show_label=False
)
confidence_slider = gr.Slider(
minimum=0.0,
maximum=0.9,
value=0.0,
step=0.05,
label="Minimum Confidence Threshold",
info="Filter predictions below this confidence level (default thresholds still apply)"
)
submit_btn = gr.Button("Predict Emotions")
# Output Section
with gr.Group():
processed_text_output = gr.Textbox(label="Preprocessed Text", lines=1, interactive=False)
thresholded_output = gr.Textbox(label="Predicted Emotions", lines=3, interactive=False)
output_plot = gr.Plot(label="Emotion Confidence Chart")
# Example carousel
with gr.Group():
gr.Markdown("<div id='examples-title'>Try These Examples</div>", elem_id="examples-title")
examples = gr.Examples(
examples=[
["Iβm thrilled to win this award! π", "Joy Example"],
["This is so frustrating, nothing works. π£", "Annoyance Example"],
["I feel so sorry for what happened. π’", "Sadness Example"],
["What a beautiful day to be alive! π", "Admiration Example"],
["Feeling nervous about the exam tomorrow π u/student r/study", "Nervousness Example"]
],
inputs=[text_input],
label=""
)
# Footer
gr.HTML(
"""
<footer>
Built by logasanjeev |
<a href="https://huggingface.co/logasanjeev/goemotions-bert">Model Card</a> |
<a href="https://www.kaggle.com/code/ravindranlogasanjeev/evaluation-logasanjeev-goemotions-bert/notebook">Kaggle Notebook</a>
</footer>
"""
)
# Bind predictions
submit_btn.click(
fn=predict_emotions_with_details,
inputs=[text_input, confidence_slider],
outputs=[processed_text_output, thresholded_output, output_plot]
)
# Launch
if __name__ == "__main__":
demo.launch() |