Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -27,6 +27,36 @@ def analyze_video(video_file):
|
|
27 |
cap = cv2.VideoCapture(temp_path)
|
28 |
success, frame = cap.read()
|
29 |
cap.release()
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
30 |
|
31 |
if not success:
|
32 |
return "Could not read video"
|
|
|
27 |
cap = cv2.VideoCapture(temp_path)
|
28 |
success, frame = cap.read()
|
29 |
cap.release()
|
30 |
+
|
31 |
+
def analyze_video_emotion(video_file):
|
32 |
+
# Save the uploaded video to a temp file
|
33 |
+
with tempfile.NamedTemporaryFile(delete=False, suffix=".mp4") as tmp:
|
34 |
+
tmp.write(video_file.read())
|
35 |
+
tmp_path = tmp.name
|
36 |
+
|
37 |
+
cap = cv2.VideoCapture(tmp_path)
|
38 |
+
emotions = []
|
39 |
+
frame_count = 0
|
40 |
+
|
41 |
+
while cap.isOpened():
|
42 |
+
ret, frame = cap.read()
|
43 |
+
if not ret or frame_count > 60: # Limit to 60 frames max
|
44 |
+
break
|
45 |
+
try:
|
46 |
+
result = DeepFace.analyze(frame, actions=['emotion'], enforce_detection=False)
|
47 |
+
emotions.append(result[0]['dominant_emotion'])
|
48 |
+
except:
|
49 |
+
pass
|
50 |
+
frame_count += 1
|
51 |
+
|
52 |
+
cap.release()
|
53 |
+
|
54 |
+
if emotions:
|
55 |
+
# Return most common emotion
|
56 |
+
return max(set(emotions), key=emotions.count)
|
57 |
+
else:
|
58 |
+
return "No face detected"
|
59 |
+
|
60 |
|
61 |
if not success:
|
62 |
return "Could not read video"
|