Spaces:
Build error
Build error
File size: 2,440 Bytes
b832def b3de9fc 37aa19b b3de9fc 37aa19b b3de9fc 37aa19b b3de9fc 37aa19b b3de9fc 37aa19b b3de9fc 37aa19b b3de9fc 37aa19b b3de9fc 37aa19b b3de9fc 37aa19b b3de9fc 37aa19b b3de9fc 37aa19b b3de9fc 5152cc0 37aa19b b3de9fc |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 |
import gradio as gr
from textblob import TextBlob
from deepface import DeepFace
import cv2
import moviepy.editor as mp
import tempfile
import os
# Sentiment analysis for text
def analyze_text(text):
blob = TextBlob(text)
sentiment = blob.sentiment.polarity
emotion = "Positive" if sentiment > 0 else "Negative" if sentiment < 0 else "Neutral"
return f"Sentiment: {emotion} (Score: {sentiment:.2f})"
# Emotion detection for image
def analyze_face(image):
try:
result = DeepFace.analyze(image, actions=['emotion'], enforce_detection=False)
dominant_emotion = result[0]['dominant_emotion']
return f"Dominant Emotion: {dominant_emotion}"
except Exception as e:
return f"Error analyzing face: {str(e)}"
# Analyze emotion in video
def analyze_video(video_path):
try:
temp_folder = tempfile.mkdtemp()
clip = mp.VideoFileClip(video_path)
frame = clip.get_frame(clip.duration / 2) # middle frame
frame_path = os.path.join(temp_folder, "frame.jpg")
cv2.imwrite(frame_path, cv2.cvtColor(frame, cv2.COLOR_RGB2BGR))
result = DeepFace.analyze(frame_path, actions=['emotion'], enforce_detection=False)
dominant_emotion = result[0]['dominant_emotion']
return f"Dominant Emotion in Video: {dominant_emotion}"
except Exception as e:
return f"Error analyzing video: {str(e)}"
# Create Gradio Interface
with gr.Blocks() as demo:
gr.Markdown("# 🧠 Emotion Decoder - Sentiment & Emotion Analysis")
with gr.Tab("Text Analysis"):
text_input = gr.Textbox(label="Enter text")
text_output = gr.Textbox(label="Sentiment Result")
text_button = gr.Button("Analyze Text")
text_button.click(analyze_text, inputs=text_input, outputs=text_output)
with gr.Tab("Face Emotion Detection"):
img_input = gr.Image(type="filepath", label="Upload an Image")
img_output = gr.Textbox(label="Emotion Result")
img_button = gr.Button("Analyze Face Emotion")
img_button.click(analyze_face, inputs=img_input, outputs=img_output)
with gr.Tab("Video Emotion Detection"):
video_input = gr.Video(label="Upload a Video")
video_output = gr.Textbox(label="Emotion Result")
video_button = gr.Button("Analyze Video Emotion")
video_button.click(analyze_video, inputs=video_input, outputs=video_output)
demo.launch()
|