logu29's picture
Update app.py
5152cc0 verified
raw
history blame
427 Bytes
import gradio as gr
from transforme import pipeline
sentiment = pipeline("emoition-analysis")
def get_emotion( input_text):
return emotion(input_text)
iface = gr.Inface(in = get_emotion,
input = "text",
outputs = ["text"],
title = 'emotion analysis',
description='get emotion negative/positive for the given input')
iface.lanch(inline = false)