File size: 857 Bytes
acc2d02
 
df9ee76
a64e68a
acc2d02
 
 
 
 
a64e68a
 
acc2d02
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
import torch
import torchvision
import torch.nn as nn

model = torchvision.models.resnet50(pretrained=False)
model.fc = nn.Linear(model.fc.in_features, num_classes)
model.load_state_dict(torch.load("model.pth"))
model.to(device)
model.eval()

import gradio as gr
from PIL import Image

# Define the function to make predictions
def predict(image):
    image = transform(image).unsqueeze(0).to(device)
    model.eval()
    with torch.no_grad():
        output = model(image)
        _, predicted = torch.max(output.data, 1)
        return dataset.classes[predicted.item()]

# Define the input and output components
image_input = gr.inputs.Image(type="pil", label="Upload Image")
label_output = gr.outputs.Label()

# Create the interface
interface = gr.Interface(fn=predict, inputs=image_input, outputs=label_output)

# Launch the interface
interface.launch()