Spaces:
Sleeping
Sleeping
import torch | |
import torchvision | |
import torch.nn as nn | |
import torchvision.transforms as transforms | |
model = torchvision.models.resnet50(pretrained=True) | |
model.fc = nn.Linear(model.fc.in_features, 2) | |
model.load_state_dict(torch.load("model.pth", map_location=torch.device('cpu'))) | |
model.eval() | |
device = torch.device("cpu") | |
transform = transforms.Compose([ | |
transforms.Resize((224, 224)), | |
transforms.ToTensor(), | |
transforms.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225]) | |
]) | |
classes = ['Fruta pr贸pria para o consumo', 'Fruta impr贸pria para o consumo'] | |
import gradio as gr | |
from PIL import Image | |
# Define the function to make predictions | |
def predict(image): | |
image = transform(image).unsqueeze(0).to(device) | |
model.eval() | |
with torch.no_grad(): | |
output = model(image) | |
_, predicted = torch.max(output.data, 1) | |
return classes[predicted.item()] | |
# Define the input and output components | |
image_input = gr.inputs.Image(type="pil", label="Upload Image") | |
label_output = gr.outputs.Label() | |
# Create the interface | |
interface = gr.Interface(fn=predict, inputs=image_input, outputs=label_output) | |
# Launch the interface | |
interface.launch() |