FruitQuality / app.py
lopesdri's picture
Update app.py
401fcb5
raw
history blame
1.19 kB
import torch
import torchvision
import torch.nn as nn
import torchvision.transforms as transforms
model = torchvision.models.resnet50(pretrained=True)
model.fc = nn.Linear(model.fc.in_features, 2)
model.load_state_dict(torch.load("model.pth", map_location=torch.device('cpu')))
model.eval()
device = torch.device("cpu")
transform = transforms.Compose([
transforms.Resize((224, 224)),
transforms.ToTensor(),
transforms.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225])
])
classes = ['Fruta pr贸pria para o consumo', 'Fruta impr贸pria para o consumo']
import gradio as gr
from PIL import Image
# Define the function to make predictions
def predict(image):
image = transform(image).unsqueeze(0).to(device)
model.eval()
with torch.no_grad():
output = model(image)
_, predicted = torch.max(output.data, 1)
return classes[predicted.item()]
# Define the input and output components
image_input = gr.inputs.Image(type="pil", label="Upload Image")
label_output = gr.outputs.Label()
# Create the interface
interface = gr.Interface(fn=predict, inputs=image_input, outputs=label_output)
# Launch the interface
interface.launch()