Spaces:
Sleeping
Sleeping
import torch | |
import torchvision | |
import torch.nn as nn | |
model = torchvision.models.resnet50(pretrained=False) | |
model.fc = nn.Linear(model.fc.in_features, num_classes) | |
model.load_state_dict(torch.load("model.pth")) | |
model.to(device) | |
model.eval() | |
import gradio as gr | |
from PIL import Image | |
# Define the function to make predictions | |
def predict(image): | |
image = transform(image).unsqueeze(0).to(device) | |
model.eval() | |
with torch.no_grad(): | |
output = model(image) | |
_, predicted = torch.max(output.data, 1) | |
return dataset.classes[predicted.item()] | |
# Define the input and output components | |
image_input = gr.inputs.Image(type="pil", label="Upload Image") | |
label_output = gr.outputs.Label() | |
# Create the interface | |
interface = gr.Interface(fn=predict, inputs=image_input, outputs=label_output) | |
# Launch the interface | |
interface.launch() |