Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -1,59 +1,28 @@
|
|
1 |
-
import torch
|
2 |
-
import torchvision
|
3 |
-
import torch.nn as nn
|
4 |
-
import torchvision.transforms as transforms
|
5 |
-
|
6 |
-
model = torchvision.models.resnet50(pretrained=True)
|
7 |
-
model.fc = nn.Linear(model.fc.in_features, 2)
|
8 |
-
model.load_state_dict(torch.load("model.pth"))
|
9 |
-
input_batch = input_batch.to('cpu')
|
10 |
-
model.to('cpu')
|
11 |
-
model.eval()
|
12 |
-
|
13 |
-
transform = transforms.Compose([
|
14 |
-
transforms.Resize((224, 224)),
|
15 |
-
transforms.ToTensor(),
|
16 |
-
transforms.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225])
|
17 |
-
])
|
18 |
-
|
19 |
-
categories = ['Fruta pr贸pria para o consumo', 'Fruta impr贸pria para o consumo']
|
20 |
-
|
21 |
import gradio as gr
|
|
|
|
|
22 |
from PIL import Image
|
23 |
|
|
|
|
|
24 |
|
25 |
-
|
26 |
-
|
27 |
-
|
28 |
-
transforms.CenterCrop(224),
|
29 |
-
transforms.ToTensor(),
|
30 |
-
transforms.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225]),
|
31 |
-
])
|
32 |
-
input_tensor = preprocess(input_image)
|
33 |
-
input_batch = input_tensor.unsqueeze(0) # create a mini-batch as expected by the model
|
34 |
-
|
35 |
-
|
36 |
|
|
|
37 |
with torch.no_grad():
|
38 |
-
|
39 |
-
|
40 |
-
probabilities = torch.nn.functional.softmax(output[0], dim=0)
|
41 |
-
|
42 |
-
|
43 |
-
# Show top categories per image
|
44 |
-
top5_prob, top5_catid = torch.topk(probabilities, 2)
|
45 |
-
result = {}
|
46 |
-
for i in range(top5_prob.size(0)):
|
47 |
-
result[categories[top5_catid[i]]] = top5_prob[i].item()
|
48 |
-
return result
|
49 |
-
|
50 |
-
inputs = gr.inputs.Image(type='pil')
|
51 |
-
outputs = gr.outputs.Label(type="confidences",num_top_classes=5)
|
52 |
|
53 |
-
|
54 |
-
|
55 |
|
56 |
-
|
|
|
|
|
57 |
|
|
|
58 |
|
59 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
import gradio as gr
|
2 |
+
import torch
|
3 |
+
from torchvision.transforms import ToTensor
|
4 |
from PIL import Image
|
5 |
|
6 |
+
# Load your PyTorch model
|
7 |
+
model = torch.load("model.pth")
|
8 |
|
9 |
+
# Define the function for image classification
|
10 |
+
def classify_image(image):
|
11 |
+
image_tensor = ToTensor()(image).unsqueeze(0)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
12 |
|
13 |
+
# Perform inference using your PyTorch model
|
14 |
with torch.no_grad():
|
15 |
+
model.eval()
|
16 |
+
outputs = model(image_tensor)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
17 |
|
18 |
+
predicted_labels = outputs.argmax(dim=1).tolist()
|
19 |
+
return predicted_labels
|
20 |
|
21 |
+
# Define the Gradio interface
|
22 |
+
inputs = gr.Image()
|
23 |
+
outputs = gr.Label(num_top_classes=1)
|
24 |
|
25 |
+
interface = gr.Interface(fn=classify_image, inputs=inputs, outputs=outputs)
|
26 |
|
27 |
+
# Launch the interface
|
28 |
+
interface.launch()
|