Spaces:
Runtime error
Runtime error
Update app.py
Browse files
app.py
CHANGED
@@ -1,43 +1,32 @@
|
|
1 |
import torch
|
2 |
-
import cv2
|
3 |
-
import numpy as np
|
4 |
import gradio as gr
|
|
|
5 |
from PIL import Image
|
6 |
|
|
|
|
|
7 |
|
8 |
-
|
|
|
|
|
|
|
|
|
9 |
|
|
|
|
|
10 |
|
11 |
-
|
12 |
-
|
13 |
-
|
14 |
-
|
15 |
-
model.max_det = 1000
|
16 |
|
|
|
17 |
|
18 |
-
|
|
|
|
|
19 |
|
|
|
20 |
|
21 |
-
|
22 |
-
|
23 |
-
predictions = results.pred[0]
|
24 |
-
boxes = predictions[:, :4] # x1, y1, x2, y2
|
25 |
-
scores = predictions[:, 4]
|
26 |
-
categories = predictions[:, 5]
|
27 |
-
new_image = np.squeeze(results.render())
|
28 |
-
|
29 |
-
return new_image
|
30 |
-
|
31 |
-
|
32 |
-
examples = ['apple_img.jpg', 'michael.gif']
|
33 |
-
|
34 |
-
|
35 |
-
css = ".output-image, .input-image, .image-preview {height: 400px !important}"
|
36 |
-
|
37 |
-
iface = gr.Interface(fn=detect,
|
38 |
-
inputs=gr.inputs.Image(type="numpy",),
|
39 |
-
outputs=gr.outputs.Image(type="numpy",),
|
40 |
-
css=css,
|
41 |
-
examples = examples,
|
42 |
-
)
|
43 |
-
iface.launch(debug=True, inline=True)
|
|
|
1 |
import torch
|
|
|
|
|
2 |
import gradio as gr
|
3 |
+
from torchvision.transforms import functional as F
|
4 |
from PIL import Image
|
5 |
|
6 |
+
# Load the YOLOv8 model (assuming it is already converted to the Hugging Face format)
|
7 |
+
model = torch.hub.load('ultralytics/yolov8', 'custom', path='yolov5s.pt')
|
8 |
|
9 |
+
# Define the prediction function
|
10 |
+
def predict(image):
|
11 |
+
# Preprocess the input image
|
12 |
+
image_tensor = F.to_tensor(image)
|
13 |
+
image_tensor.unsqueeze_(0)
|
14 |
|
15 |
+
# Perform inference
|
16 |
+
results = model(image_tensor)
|
17 |
|
18 |
+
# Post-process the results
|
19 |
+
# Extract the bounding box coordinates and class labels
|
20 |
+
bboxes = results.xyxy[0].tolist()
|
21 |
+
labels = results.names[0]
|
|
|
22 |
|
23 |
+
return bboxes, labels
|
24 |
|
25 |
+
# Define the Gradio interface
|
26 |
+
inputs = gr.inputs.Image()
|
27 |
+
outputs = gr.outputs.Image()
|
28 |
|
29 |
+
interface = gr.Interface(fn=predict, inputs=inputs, outputs=outputs, capture_session=True)
|
30 |
|
31 |
+
# Run the interface
|
32 |
+
interface.launch()
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|