lopesdri commited on
Commit
2642a92
·
1 Parent(s): f63a53c

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +7 -37
app.py CHANGED
@@ -2,8 +2,6 @@ import torch
2
  import cv2
3
  import numpy as np
4
  import gradio as gr
5
- from sahi.prediction import ObjectPrediction
6
- from sahi.utils.cv import visualize_object_predictions, read_image
7
 
8
 
9
  model = torch.hub.load('ultralytics/yolov5', 'yolov5s', pretrained=True)
@@ -19,41 +17,13 @@ model.max_det = 1000
19
  def detect(img):
20
 
21
 
22
- results = model.predict(image, imgsz=image_size, return_outputs=True)
23
-
24
-
25
- object_prediction_list = []
26
- for _, image_results in enumerate(results):
27
- if len(image_results)!=0:
28
- image_predictions_in_xyxy_format = image_results['det']
29
- for pred in image_predictions_in_xyxy_format:
30
- x1, y1, x2, y2 = (
31
- int(pred[0]),
32
- int(pred[1]),
33
- int(pred[2]),
34
- int(pred[3]),
35
- )
36
- bbox = [x1, y1, x2, y2]
37
- score = pred[4]
38
- category_name = model.model.names[int(pred[5])]
39
- category_id = pred[5]
40
- object_prediction = ObjectPrediction(
41
- bbox=bbox,
42
- category_id=int(category_id),
43
- score=score,
44
- category_name=category_name,
45
- )
46
- object_prediction_list.append(object_prediction)
47
-
48
- image = read_image(image)
49
- output_image = visualize_object_predictions(image=image, object_prediction_list=object_prediction_list)
50
- return output_image['image']
51
-
52
- def drawRectangles(image, dfResults):
53
- for index, row in dfResults.iterrows():
54
- print( (row['xmin'], row['ymin']))
55
- image = cv2.rectangle(image, (row['xmin'], row['ymin']), (row['xmax'], row['ymax']), (255, 0, 0), 2)
56
- return image
57
 
58
 
59
  img = gr.inputs.Image(shape=(192, 192))
 
2
  import cv2
3
  import numpy as np
4
  import gradio as gr
 
 
5
 
6
 
7
  model = torch.hub.load('ultralytics/yolov5', 'yolov5s', pretrained=True)
 
17
  def detect(img):
18
 
19
 
20
+ results = model(img, size=640)
21
+
22
+ predictions = results.pred[0]
23
+ boxes = predictions[:, :4] # x1, y1, x2, y2
24
+ scores = predictions[:, 4]
25
+ categories = predictions[:, 5]
26
+ return img.save()
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
27
 
28
 
29
  img = gr.inputs.Image(shape=(192, 192))