import torch import cv2 import numpy as np import gradio as gr from PIL import Image model = torch.hub.load('ultralytics/yolov5', 'yolov5s', pretrained=True) model.conf = 0.25 model.iou = 0.45 model.agnostic = False model.multi_label = False model.max_det = 1000 def detect(img): results = model(img, size=640) predictions = results.pred[0] boxes = predictions[:, :4] # x1, y1, x2, y2 scores = predictions[:, 4] categories = predictions[:, 5] new_image = np.squeeze(results.render()) return new_image examples = ['apple_img.jpg',] css = ".output-image, .input-image, .image-preview {height: 400px !important}" iface = gr.Interface(fn=detect, inputs=gr.inputs.Image(type="numpy",), outputs=gr.outputs.Image(type="numpy",), css=css, examples = examples, ) iface.launch(debug=True, inline=True)