import torch import cv2 import numpy as np import gradio as gr from sahi.prediction import ObjectPrediction from sahi.utils.cv import visualize_object_predictions, read_image model = torch.hub.load('ultralytics/yolov5', 'yolov5s', pretrained=True) model.conf = 0.25 model.iou = 0.45 model.agnostic = False model.multi_label = False model.max_det = 1000 def detect(img): results = model.predict(image, imgsz=image_size, return_outputs=True) object_prediction_list = [] for _, image_results in enumerate(results): if len(image_results)!=0: image_predictions_in_xyxy_format = image_results['det'] for pred in image_predictions_in_xyxy_format: x1, y1, x2, y2 = ( int(pred[0]), int(pred[1]), int(pred[2]), int(pred[3]), ) bbox = [x1, y1, x2, y2] score = pred[4] category_name = model.model.names[int(pred[5])] category_id = pred[5] object_prediction = ObjectPrediction( bbox=bbox, category_id=int(category_id), score=score, category_name=category_name, ) object_prediction_list.append(object_prediction) image = read_image(image) output_image = visualize_object_predictions(image=image, object_prediction_list=object_prediction_list) return output_image['image'] def drawRectangles(image, dfResults): for index, row in dfResults.iterrows(): print( (row['xmin'], row['ymin'])) image = cv2.rectangle(image, (row['xmin'], row['ymin']), (row['xmax'], row['ymax']), (255, 0, 0), 2) return image img = gr.inputs.Image(shape=(192, 192)) intf = gr.Interface(fn=detect, inputs=img, outputs='image') intf.launch(inline=False)