Spaces:
Running
Running
File size: 45,917 Bytes
e6d4b46 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 |
import random
import numpy as np
import timm
import torch
import torch.nn as nn
import torch.nn.functional as F
import torchaudio
import torchvision.transforms as T
from PIL import Image
from timm.models.layers import to_2tuple, DropPath
from timm.models.vision_transformer import Mlp, PatchEmbed, Block
import os
class Attention(nn.Module):
def __init__(self, dim, num_heads=8, qkv_bias=False, qk_scale=None, attn_drop=0., proj_drop=0.):
super().__init__()
self.num_heads = num_heads
head_dim = dim // num_heads
# NOTE scale factor was wrong in my original version, can set manually to be compat with prev weights
self.scale = qk_scale or head_dim ** -0.5
self.qkv = nn.Linear(dim, dim * 3, bias=qkv_bias)
self.attn_drop = nn.Dropout(attn_drop)
self.proj = nn.Linear(dim, dim)
self.proj_drop = nn.Dropout(proj_drop)
def forward(self, x):
B, N, C = x.shape
qkv = self.qkv(x).reshape(B, N, 3, self.num_heads, C // self.num_heads).permute(2, 0, 3, 1, 4)
q, k, v = qkv[0], qkv[1], qkv[2] # make torchscript happy (cannot use tensor as tuple)
attn = (q @ k.transpose(-2, -1)) * self.scale
attn = attn.softmax(dim=-1)
attn = self.attn_drop(attn)
x = (attn @ v).transpose(1, 2).reshape(B, N, C)
x = self.proj(x)
x = self.proj_drop(x)
return x
def get_2d_sincos_pos_embed(embed_dim, grid_h_size, grid_w_size, cls_token=False):
"""
grid_size: int of the grid height and width
return:
pos_embed: [grid_size*grid_size, embed_dim] or [1+grid_size*grid_size, embed_dim] (w/ or w/o cls_token)
"""
grid_h = np.arange(grid_h_size, dtype=float)
grid_w = np.arange(grid_w_size, dtype=float)
grid = np.meshgrid(grid_w, grid_h) # here w goes first
grid = np.stack(grid, axis=0)
grid = grid.reshape([2, 1, grid_w_size, grid_h_size])
pos_embed = get_2d_sincos_pos_embed_from_grid(embed_dim, grid)
if cls_token:
pos_embed = np.concatenate([np.zeros([1, embed_dim]), pos_embed], axis=0)
return pos_embed
def get_2d_sincos_pos_embed_from_grid(embed_dim, grid):
assert embed_dim % 2 == 0
# use half of dimensions to encode grid_h
emb_h = get_1d_sincos_pos_embed_from_grid(embed_dim // 2, grid[0]) # (H*W, D/2)
emb_w = get_1d_sincos_pos_embed_from_grid(embed_dim // 2, grid[1]) # (H*W, D/2)
emb = np.concatenate([emb_h, emb_w], axis=1) # (H*W, D)
return emb
def get_1d_sincos_pos_embed_from_grid(embed_dim, pos):
"""
embed_dim: output dimension for each position
pos: a list of positions to be encoded: size (M,)
out: (M, D)
"""
assert embed_dim % 2 == 0
omega = np.arange(embed_dim // 2, dtype=float)
omega /= embed_dim / 2.
omega = 1. / 10000 ** omega # (D/2,)
pos = pos.reshape(-1) # (M,)
out = np.einsum('m,d->md', pos, omega) # (M, D/2), outer product
emb_sin = np.sin(out) # (M, D/2)
emb_cos = np.cos(out) # (M, D/2)
emb = np.concatenate([emb_sin, emb_cos], axis=1) # (M, D)
return emb
# --------------------------------------------------------
# Interpolate position embeddings for high-resolution
# References:
# DeiT: https://github.com/facebookresearch/deit
# --------------------------------------------------------
def interpolate_pos_embed(model, checkpoint_model):
if 'pos_embed' in checkpoint_model:
pos_embed_checkpoint = checkpoint_model['pos_embed']
embedding_size = pos_embed_checkpoint.shape[-1]
num_patches = model.patch_embed.num_patches
num_extra_tokens = model.pos_embed.shape[-2] - num_patches
# height (== width) for the checkpoint position embedding
orig_size = int((pos_embed_checkpoint.shape[-2] - num_extra_tokens) ** 0.5)
# height (== width) for the new position embedding
new_size = int(num_patches ** 0.5)
# class_token and dist_token are kept unchanged
if orig_size != new_size:
print("Position interpolate from %dx%d to %dx%d" % (orig_size, orig_size, new_size, new_size))
extra_tokens = pos_embed_checkpoint[:, :num_extra_tokens]
# only the position tokens are interpolated
pos_tokens = pos_embed_checkpoint[:, num_extra_tokens:]
pos_tokens = pos_tokens.reshape(-1, orig_size, orig_size, embedding_size).permute(0, 3, 1, 2)
pos_tokens = torch.nn.functional.interpolate(
pos_tokens, size=(new_size, new_size), mode='bicubic', align_corners=False)
pos_tokens = pos_tokens.permute(0, 2, 3, 1).flatten(1, 2)
new_pos_embed = torch.cat((extra_tokens, pos_tokens), dim=1)
checkpoint_model['pos_embed'] = new_pos_embed
class PatchEmbed(nn.Module):
def __init__(self, img_size=224, patch_size=16, in_chans=3, embed_dim=768):
super().__init__()
img_size = to_2tuple(img_size)
patch_size = to_2tuple(patch_size)
num_patches = (img_size[1] // patch_size[1]) * (img_size[0] // patch_size[0])
self.img_size = img_size
self.patch_size = patch_size
self.num_patches = num_patches
self.proj = nn.Conv2d(in_chans, embed_dim, kernel_size=patch_size, stride=patch_size)
def forward(self, x):
x = self.proj(x).flatten(2).transpose(1, 2)
return x
class Block(nn.Module):
def __init__(self, dim, num_heads, mlp_ratio=4., qkv_bias=False, qk_scale=None, drop=0., attn_drop=0.,
drop_path=0., act_layer=nn.GELU, norm_layer=nn.LayerNorm):
super().__init__()
self.norm1 = norm_layer(dim)
self.norm1_a = norm_layer(dim)
self.norm1_v = norm_layer(dim)
self.attn = Attention(
dim, num_heads=num_heads, qkv_bias=qkv_bias, qk_scale=qk_scale, attn_drop=attn_drop, proj_drop=drop)
# NOTE: drop path for stochastic depth, we shall see if this is better than dropout here
self.drop_path = DropPath(drop_path) if drop_path > 0. else nn.Identity()
self.norm2 = norm_layer(dim)
self.norm2_a = norm_layer(dim)
self.norm2_v = norm_layer(dim)
mlp_hidden_dim = int(dim * mlp_ratio)
self.mlp = Mlp(in_features=dim, hidden_features=mlp_hidden_dim, act_layer=act_layer, drop=drop)
def forward(self, x, modality=None):
if modality == None:
x = x + self.drop_path(self.attn(self.norm1(x)))
x = x + self.drop_path(self.mlp(self.norm2(x)))
elif modality == 'a':
x = x + self.drop_path(self.attn(self.norm1_a(x)))
x = x + self.drop_path(self.mlp(self.norm2_a(x)))
elif modality == 'v':
x = x + self.drop_path(self.attn(self.norm1_v(x)))
x = x + self.drop_path(self.mlp(self.norm2_v(x)))
return x
# our main proposed model, for pretraining only, for finetuning, use CAVMAEFT class
class CAVMAE(nn.Module):
""" CAV-MAE Model
"""
def __init__(self, img_size=224, audio_length=1024, patch_size=16, in_chans=3,
embed_dim=768, modality_specific_depth=11, num_heads=12,
decoder_embed_dim=512, decoder_depth=8, decoder_num_heads=16,
mlp_ratio=4., norm_layer=nn.LayerNorm, norm_pix_loss=False, tr_pos=False):
super().__init__()
print('A CAV-MAE Model')
print('Use norm_pix_loss: ', norm_pix_loss)
print('Learnable Positional Embedding: ', tr_pos)
# the encoder part
# overide the timm package
timm.models.vision_transformer.PatchEmbed = PatchEmbed
timm.models.vision_transformer.Block = Block
self.patch_embed_a = PatchEmbed(img_size, patch_size, 1, embed_dim)
self.patch_embed_v = PatchEmbed(img_size, patch_size, in_chans, embed_dim)
self.patch_embed_a.num_patches = int(audio_length * 128 / 256)
print('Number of Audio Patches: {:d}, Visual Patches: {:d}'.format(self.patch_embed_a.num_patches,
self.patch_embed_v.num_patches))
self.modality_a = nn.Parameter(torch.zeros(1, 1, embed_dim))
self.modality_v = nn.Parameter(torch.zeros(1, 1, embed_dim))
self.pos_embed_a = nn.Parameter(torch.zeros(1, self.patch_embed_a.num_patches, embed_dim),
requires_grad=tr_pos) # fixed sin-cos embedding
self.pos_embed_v = nn.Parameter(torch.zeros(1, self.patch_embed_v.num_patches, embed_dim),
requires_grad=tr_pos) # fixed sin-cos embedding
# audio-branch
self.blocks_a = nn.ModuleList(
[Block(embed_dim, num_heads, mlp_ratio, qkv_bias=True, qk_scale=None, norm_layer=norm_layer) for i in
range(modality_specific_depth)])
# visual-branch
self.blocks_v = nn.ModuleList(
[Block(embed_dim, num_heads, mlp_ratio, qkv_bias=True, qk_scale=None, norm_layer=norm_layer) for i in
range(modality_specific_depth)])
# unified branch
self.blocks_u = nn.ModuleList(
[Block(embed_dim, num_heads, mlp_ratio, qkv_bias=True, qk_scale=None, norm_layer=norm_layer) for i in
range(12 - modality_specific_depth)])
# independent normalization layer for audio, visual, and audio-visual
self.norm_a, self.norm_v, self.norm = norm_layer(embed_dim), norm_layer(embed_dim), norm_layer(embed_dim)
# the decoder part
# Project to lower dimension for the decoder
self.decoder_embed = nn.Linear(embed_dim, decoder_embed_dim, bias=True)
# token used for masking
self.mask_token = nn.Parameter(torch.zeros(1, 1, decoder_embed_dim))
self.decoder_modality_a = nn.Parameter(torch.zeros(1, 1, decoder_embed_dim))
self.decoder_modality_v = nn.Parameter(torch.zeros(1, 1, decoder_embed_dim))
self.decoder_pos_embed_a = nn.Parameter(torch.zeros(1, self.patch_embed_a.num_patches, decoder_embed_dim),
requires_grad=tr_pos) # fixed sin-cos embedding
self.decoder_pos_embed_v = nn.Parameter(torch.zeros(1, self.patch_embed_v.num_patches, decoder_embed_dim),
requires_grad=tr_pos) # fixed sin-cos embedding
self.decoder_blocks = nn.ModuleList(
[Block(decoder_embed_dim, decoder_num_heads, mlp_ratio, qkv_bias=True, qk_scale=None, norm_layer=norm_layer)
for i in range(decoder_depth)])
self.decoder_norm = norm_layer(decoder_embed_dim)
# project channel is different for two modality, use two projection head
self.decoder_pred_a = nn.Linear(decoder_embed_dim, patch_size ** 2 * 1, bias=True) # decoder to patch
self.decoder_pred_v = nn.Linear(decoder_embed_dim, patch_size ** 2 * in_chans, bias=True) # decoder to patch
self.norm_pix_loss = norm_pix_loss
self.initialize_weights()
print('Audio Positional Embedding Shape:', self.pos_embed_a.shape)
print('Visual Positional Embedding Shape:', self.pos_embed_v.shape)
def initialize_weights(self):
# initialize (and freeze) pos_embed by sin-cos embedding, opt the cls token, add by myself
pos_embed_a = get_2d_sincos_pos_embed(self.pos_embed_a.shape[-1], 8, int(self.patch_embed_a.num_patches / 8),
cls_token=False)
self.pos_embed_a.data.copy_(torch.from_numpy(pos_embed_a).float().unsqueeze(0))
pos_embed_v = get_2d_sincos_pos_embed(self.pos_embed_v.shape[-1], int(self.patch_embed_v.num_patches ** .5),
int(self.patch_embed_v.num_patches ** .5), cls_token=False)
self.pos_embed_v.data.copy_(torch.from_numpy(pos_embed_v).float().unsqueeze(0))
decoder_pos_embed_a = get_2d_sincos_pos_embed(self.decoder_pos_embed_a.shape[-1], 8,
int(self.patch_embed_a.num_patches / 8), cls_token=False)
self.decoder_pos_embed_a.data.copy_(torch.from_numpy(decoder_pos_embed_a).float().unsqueeze(0))
decoder_pos_embed_v = get_2d_sincos_pos_embed(self.decoder_pos_embed_v.shape[-1],
int(self.patch_embed_v.num_patches ** .5),
int(self.patch_embed_v.num_patches ** .5), cls_token=False)
self.decoder_pos_embed_v.data.copy_(torch.from_numpy(decoder_pos_embed_v).float().unsqueeze(0))
# initialize patch_embed like nn.Linear (instead of nn.Conv2d)
w = self.patch_embed_a.proj.weight.data
torch.nn.init.xavier_uniform_(w.view([w.shape[0], -1]))
w = self.patch_embed_v.proj.weight.data
torch.nn.init.xavier_uniform_(w.view([w.shape[0], -1]))
# timm's trunc_normal_(std=.02) is effectively normal_(std=0.02) as cutoff is too big (2.)
torch.nn.init.normal_(self.modality_a, std=.02)
torch.nn.init.normal_(self.modality_v, std=.02)
torch.nn.init.normal_(self.decoder_modality_a, std=.02)
torch.nn.init.normal_(self.decoder_modality_v, std=.02)
torch.nn.init.normal_(self.mask_token, std=.02)
# initialize nn.Linear and nn.LayerNorm
self.apply(self._init_weights)
def _init_weights(self, m):
if isinstance(m, nn.Linear):
# we use xavier_uniform following official JAX ViT:
torch.nn.init.xavier_uniform_(m.weight)
if isinstance(m, nn.Linear) and m.bias is not None:
nn.init.constant_(m.bias, 0)
elif isinstance(m, nn.LayerNorm):
nn.init.constant_(m.bias, 0)
nn.init.constant_(m.weight, 1.0)
def patchify(self, imgs, c, h, w, p=16):
"""
imgs: (N, 3, H, W)
x: (N, L, patch_size**2 *3)
"""
x = imgs.reshape(shape=(imgs.shape[0], c, h, p, w, p))
x = torch.einsum('nchpwq->nhwpqc', x)
x = x.reshape(shape=(imgs.shape[0], h * w, p ** 2 * c))
return x
def unpatchify(self, x, c, h, w, p=16):
"""
x: (N, L, patch_size**2 *3)
imgs: (N, 3, H, W)
"""
assert h * w == x.shape[1]
x = x.reshape(shape=(x.shape[0], h, w, p, p, c))
x = torch.einsum('nhwpqc->nchpwq', x)
imgs = x.reshape(shape=(x.shape[0], c, h * p, w * p))
return imgs
def random_masking_unstructured(self, x, mask_ratio):
"""
Perform per-sample random masking by per-sample shuffling.
Per-sample shuffling is done by argsort random noise.
x: [N, L, D], sequence
"""
N, L, D = x.shape # batch, length, dim
len_keep = int(L * (1 - mask_ratio))
noise = torch.rand(N, L, device=x.device) # noise in [0, 1]
# sort noise for each sample
ids_shuffle = torch.argsort(noise, dim=1) # ascend: small is keep, large is remove
ids_restore = torch.argsort(ids_shuffle, dim=1)
# keep the first subset
ids_keep = ids_shuffle[:, :len_keep]
x_masked = torch.gather(x, dim=1, index=ids_keep.unsqueeze(-1).repeat(1, 1, D))
# generate the binary mask: 0 is keep, 1 is remove
mask = torch.ones([N, L], device=x.device)
mask[:, :len_keep] = 0
# unshuffle to get the binary mask
mask = torch.gather(mask, dim=1, index=ids_restore)
return x_masked, mask, ids_restore
def random_masking_structured(self, x, mask_ratio, t=64, f=8, mode='time'):
"""
Perform per-sample random masking by per-sample shuffling.
Per-sample shuffling is done by argsort random noise.
x: [N, L, D], sequence
"""
N, L, D = x.shape # batch, length, dim
len_keep = int(L * (1 - mask_ratio))
noise = torch.rand(N, L, device=x.device) # noise in [0, 1]
assert L == f * t
noise = noise.reshape(N, f, t) # the audio patch is in shape [f,t], not [t,f]
if mode == 'time':
for i in range(N):
mask_t_list = random.sample(range(t), int(t * mask_ratio))
for k in mask_t_list:
noise[i, :, k] = 1.1 # large value will be removed
elif mode == 'freq':
for i in range(N):
mask_f_list = random.sample(range(f), int(f * mask_ratio))
for k in mask_f_list:
noise[i, k, :] = 1.1 # large value will be removed
elif mode == 'tf':
for i in range(N):
mask_t_list = random.sample(range(t), int(t * mask_ratio * 0.7))
for k in mask_t_list:
noise[i, :, k] = 1.1 # large value will be removed
for i in range(N):
mask_f_list = random.sample(range(f), int(f * mask_ratio * 0.7))
for k in mask_f_list:
noise[i, k, :] = 1.1 # large value will be removed
noise = noise.reshape(N, L)
# sort noise for each sample, only need to manuplate these two ids_shuffle, ids_restore
ids_shuffle = torch.argsort(noise, dim=1) # ascend: small is keep, large is remove
ids_restore = torch.argsort(ids_shuffle, dim=1)
# keep the first subset
ids_keep = ids_shuffle[:, :len_keep]
x_masked = torch.gather(x, dim=1, index=ids_keep.unsqueeze(-1).repeat(1, 1, D))
# generate the binary mask: 0 is keep, 1 is remove
mask = torch.ones([N, L], device=x.device)
mask[:, :len_keep] = 0
# unshuffle to get the binary mask
mask = torch.gather(mask, dim=1, index=ids_restore)
return x_masked, mask, ids_restore
def forward_encoder(self, a, v, mask_ratio_a, mask_ratio_v, mask_mode='unstructured'):
# embed patches
a = a.unsqueeze(1)
a = a.transpose(2, 3)
a = self.patch_embed_a(a)
a = a + self.pos_embed_a
a = a + self.modality_a
v = self.patch_embed_v(v)
v = v + self.pos_embed_v
v = v + self.modality_v
# by default, we always use unstructured masking
if mask_mode == 'unstructured':
a, mask_a, ids_restore_a = self.random_masking_unstructured(a, mask_ratio_a)
# in ablation study, we tried time/freq/tf masking. mode in ['freq', 'time', 'tf']
else:
a, mask_a, ids_restore_a = self.random_masking_structured(a, mask_ratio_a, t=64, f=8, mode=mask_mode)
# visual branch always use unstructured masking
v, mask_v, ids_restore_v = self.random_masking_unstructured(v, mask_ratio_v)
# audio and visual stream, independent blocks
for blk in self.blocks_a:
a = blk(a)
for blk in self.blocks_v:
v = blk(v)
x = torch.cat((a, v), dim=1)
# unified stream, shared blocks_u, but independent normalization layers
for blk in self.blocks_u:
x = blk(x)
x = self.norm(x)
for blk in self.blocks_u:
ca = blk(a, 'a')
ca = self.norm_a(ca)
for blk in self.blocks_u:
cv = blk(v, 'v')
cv = self.norm_v(cv)
return x, mask_a, ids_restore_a, mask_v, ids_restore_v, ca, cv
def forward_decoder(self, x, mask_a, ids_restore_a, mask_v, ids_restore_v):
x = self.decoder_embed(x)
# append mask tokens to sequence
# mask_tokens_a in shape [B, #a_mask_token, mask_token_dim], get the number of masked samples from mask_a[0], which is the first example of the batch, all samples should have same number of masked tokens
mask_tokens_a = self.mask_token.repeat(x.shape[0], int(mask_a[0].sum()), 1)
a_ = torch.cat([x[:, :self.patch_embed_a.num_patches - int(mask_a[0].sum()), :], mask_tokens_a],
dim=1) # no cls token
a_ = torch.gather(a_, dim=1, index=ids_restore_a.unsqueeze(-1).repeat(1, 1, x.shape[2])) # unshuffle
# similar for the visual modality
mask_tokens_v = self.mask_token.repeat(x.shape[0], int(mask_v[0].sum()), 1)
v_ = torch.cat([x[:, self.patch_embed_a.num_patches - int(mask_a[0].sum()):, :], mask_tokens_v],
dim=1) # no cls token
v_ = torch.gather(v_, dim=1, index=ids_restore_v.unsqueeze(-1).repeat(1, 1, x.shape[2])) # unshuffle
# concatenate audio and visual tokens
x = torch.cat([a_, v_], dim=1)
decoder_pos_embed = torch.cat([self.decoder_pos_embed_a, self.decoder_pos_embed_v], dim=1)
x = x + decoder_pos_embed
# add modality indication tokens
x[:, 0:self.patch_embed_a.num_patches, :] = x[:, 0:self.patch_embed_a.num_patches, :] + self.decoder_modality_a
x[:, self.patch_embed_a.num_patches:, :] = x[:, self.patch_embed_a.num_patches:, :] + self.decoder_modality_v
# apply Transformer blocks
for blk in self.decoder_blocks:
x = blk(x)
x = self.decoder_norm(x)
# predictor projection
x_a = self.decoder_pred_a(x[:, :self.patch_embed_a.num_patches, :])
x_v = self.decoder_pred_v(x[:, self.patch_embed_a.num_patches:, :])
# return audio and video tokens
return x_a, x_v
def forward_contrastive(self, audio_rep, video_rep, bidirect_contrast=False):
# calculate nce loss for mean-visual representation and mean-audio representation
audio_rep = torch.nn.functional.normalize(audio_rep, dim=-1)
video_rep = torch.nn.functional.normalize(video_rep, dim=-1)
total = torch.mm(audio_rep, torch.transpose(video_rep, 0, 1)) / 0.05
# by default we use single directional
if bidirect_contrast == False:
nce = -torch.mean(torch.diag(torch.nn.functional.log_softmax(total, dim=0)))
c_acc = torch.sum(torch.eq(torch.argmax(torch.nn.functional.softmax(total, dim=0), dim=0),
torch.arange(0, total.shape[0], device=audio_rep.device))) / total.shape[0]
return nce, c_acc
else:
nce_1 = -torch.mean(torch.diag(torch.nn.functional.log_softmax(total, dim=0)))
nce_2 = -torch.mean(torch.diag(torch.nn.functional.log_softmax(total.t(), dim=0)))
c_acc_1 = torch.sum(torch.eq(torch.argmax(torch.nn.functional.softmax(total, dim=0), dim=0),
torch.arange(0, total.shape[0], device=audio_rep.device))) / total.shape[0]
c_acc_2 = torch.sum(torch.eq(torch.argmax(torch.nn.functional.softmax(total.t(), dim=0), dim=0),
torch.arange(0, total.shape[0], device=audio_rep.device))) / total.shape[0]
nce = (nce_1 + nce_2) / 2
c_acc = (c_acc_1 + c_acc_2) / 2
return nce, c_acc
def forward_mae_loss(self, input, pred, mask, modality):
if modality == 'a':
# for audio, need to adjust the shape
input = input.unsqueeze(1)
input = input.transpose(2, 3)
target = self.patchify(input, 1, int(input.shape[2] / self.patch_embed_a.patch_size[0]),
int(input.shape[3] / self.patch_embed_a.patch_size[1]), 16)
elif modality == 'v':
target = self.patchify(input, 3, int(input.shape[2] / self.patch_embed_v.patch_size[0]),
int(input.shape[3] / self.patch_embed_v.patch_size[1]), 16)
# patch-wise normalization might minorly improve the classification performance, but will make the model lose inpainting function
if self.norm_pix_loss:
mean = target.mean(dim=-1, keepdim=True)
var = target.var(dim=-1, keepdim=True)
target = (target - mean) / (var + 1.e-6) ** .5
loss = (pred - target) ** 2
loss = loss.mean(dim=-1) # [N, L], mean loss per patch
loss = (loss * mask).sum() / mask.sum() # mean loss on removed patches
return loss
def forward(self, audio, imgs, mask_ratio_a=0.75, mask_ratio_v=0.75, mae_loss_weight=1., contrast_loss_weight=0.01,
mask_mode='unstructured'):
# latent is used for reconstruction (mae), latent_c_{a,v} are used for contrastive learning
latent, mask_a, ids_restore_a, mask_v, ids_restore_v, latent_c_a, latent_c_v = self.forward_encoder(audio, imgs,
mask_ratio_a,
mask_ratio_v,
mask_mode=mask_mode)
# if mae loss is used
if mae_loss_weight != 0:
pred_a, pred_v = self.forward_decoder(latent, mask_a, ids_restore_a, mask_v, ids_restore_v)
loss_mae_a = self.forward_mae_loss(audio, pred_a, mask_a, 'a')
loss_mae_v = self.forward_mae_loss(imgs, pred_v, mask_v, 'v')
loss_mae = mae_loss_weight * (loss_mae_a + loss_mae_v)
else:
loss_mae_a, loss_mae_v, loss_mae = torch.tensor(0.0, device=audio.device), torch.tensor(0.0,
device=audio.device), torch.tensor(
0.0, device=audio.device)
# if contrastive loss is used
if contrast_loss_weight != 0:
# note this is single directional
loss_c, c_acc = self.forward_contrastive(latent_c_a.mean(dim=1), latent_c_v.mean(dim=1))
loss_c = contrast_loss_weight * loss_c
else:
loss_c, c_acc = torch.tensor(0.0, device=audio.device), torch.tensor(0.0, device=audio.device)
loss = loss_mae + loss_c
return loss, loss_mae, loss_mae_a, loss_mae_v, loss_c, mask_a, mask_v, c_acc
# used only for inpainting, ignore if inpainting is not of interest
def forward_inpaint(self, audio, imgs, mask_ratio_a=0.75, mask_ratio_v=0.75, mask_mode='unstructured'):
latent, mask_a, ids_restore_a, mask_v, ids_restore_v, latent_c_a, latent_c_v = self.forward_encoder(audio, imgs,
mask_ratio_a,
mask_ratio_v,
mask_mode=mask_mode)
pred_a, pred_v = self.forward_decoder(latent, mask_a, ids_restore_a, mask_v, ids_restore_v) # [N, L, p*p*3]
loss_pixel_a = self.forward_mae_loss(audio, pred_a, mask_a, 'a')
loss_pixel_v = self.forward_mae_loss(imgs, pred_v, mask_v, 'v')
return pred_a, pred_v, mask_a, mask_v, loss_pixel_a, loss_pixel_v
# used for retrieval, ignore if retrieval is not of interest
def forward_feat(self, a, v):
# embed patches
a = a.unsqueeze(1)
a = a.transpose(2, 3)
a = self.patch_embed_a(a)
a = a + self.pos_embed_a
a = a + self.modality_a
v = self.patch_embed_v(v)
v = v + self.pos_embed_v
v = v + self.modality_v
# the modality-specific stream
for blk in self.blocks_a:
a = blk(a)
for blk in self.blocks_v:
v = blk(v)
# use modality specific normalization,
for blk in self.blocks_u:
a = blk(a, 'a')
a = self.norm_a(a)
for blk in self.blocks_u:
v = blk(v, 'v')
v = self.norm_v(v)
return a, v
def forward_audio(self, a):
# embed patches
a = a.unsqueeze(1)
a = a.transpose(2, 3)
a = self.patch_embed_a(a)
a = a + self.pos_embed_a
a = a + self.modality_a
# the modality-specific stream
for blk in self.blocks_a:
a = blk(a)
# use modality specific normalization,
for blk in self.blocks_u:
a = blk(a, 'a')
a = self.norm_a(a)
return a.reshape(a.shape[0], 128 // 16, 1024 // 16, 768).permute(0, 3, 1, 2)
def forward_video(self, v):
v = self.patch_embed_v(v)
v = v + self.pos_embed_v
v = v + self.modality_v
for blk in self.blocks_v:
v = blk(v)
for blk in self.blocks_u:
v = blk(v, 'v')
v = self.norm_v(v)
return v.reshape(v.shape[0], 224 // 16, 224 // 16, 768).permute(0, 3, 1, 2)
# the finetuned CAV-MAE model
class CAVMAEFT(nn.Module):
def __init__(self, label_dim, img_size=224, audio_length=1024, patch_size=16, in_chans=3,
embed_dim=768, modality_specific_depth=11, num_heads=12, mlp_ratio=4., norm_layer=nn.LayerNorm,
norm_pix_loss=False, tr_pos=True):
super().__init__()
timm.models.vision_transformer.Block = Block
print('Use norm_pix_loss: ', norm_pix_loss)
timm.models.vision_transformer.PatchEmbed = PatchEmbed
timm.models.vision_transformer.Block = Block
self.patch_embed_a = PatchEmbed(img_size, patch_size, 1, embed_dim)
self.patch_embed_v = PatchEmbed(img_size, patch_size, in_chans, embed_dim)
self.patch_embed_a.num_patches = int(audio_length * 128 / 256)
print('Number of Audio Patches: {:d}, Visual Patches: {:d}'.format(self.patch_embed_a.num_patches,
self.patch_embed_v.num_patches))
self.modality_a = nn.Parameter(torch.zeros(1, 1, embed_dim))
self.modality_v = nn.Parameter(torch.zeros(1, 1, embed_dim))
self.pos_embed_a = nn.Parameter(torch.zeros(1, self.patch_embed_a.num_patches, embed_dim),
requires_grad=tr_pos) # fixed sin-cos embedding
self.pos_embed_v = nn.Parameter(torch.zeros(1, self.patch_embed_v.num_patches, embed_dim),
requires_grad=tr_pos) # fixed sin-cos embedding
self.blocks_a = nn.ModuleList(
[Block(embed_dim, num_heads, mlp_ratio, qkv_bias=True, qk_scale=None, norm_layer=norm_layer) for i in
range(modality_specific_depth)])
self.blocks_v = nn.ModuleList(
[Block(embed_dim, num_heads, mlp_ratio, qkv_bias=True, qk_scale=None, norm_layer=norm_layer) for i in
range(modality_specific_depth)])
self.blocks_u = nn.ModuleList(
[Block(embed_dim, num_heads, mlp_ratio, qkv_bias=True, qk_scale=None, norm_layer=norm_layer) for i in
range(12 - modality_specific_depth)])
self.norm_a = norm_layer(embed_dim)
self.norm_v = norm_layer(embed_dim)
self.norm = norm_layer(embed_dim)
self.mlp_head = nn.Sequential(nn.LayerNorm(embed_dim), nn.Linear(embed_dim, label_dim))
self.initialize_weights()
print('Audio Positional Embedding Shape:', self.pos_embed_a.shape)
print('Visual Positional Embedding Shape:', self.pos_embed_v.shape)
def get_patch_num(self, input_shape, stride):
test_input = torch.zeros(1, 1, input_shape[0], input_shape[1])
test_proj = torch.nn.Conv2d(1, 4, kernel_size=(16, 16), stride=(stride, stride))
test_output = test_proj(test_input)
print(test_output.shape)
return test_output.shape[2], test_output[3], test_output[2] * test_output[2]
def initialize_weights(self):
pos_embed_a = get_2d_sincos_pos_embed(self.pos_embed_a.shape[-1], 8, int(self.patch_embed_a.num_patches / 8),
cls_token=False)
self.pos_embed_a.data.copy_(torch.from_numpy(pos_embed_a).float().unsqueeze(0))
pos_embed_v = get_2d_sincos_pos_embed(self.pos_embed_v.shape[-1], int(self.patch_embed_v.num_patches ** .5),
int(self.patch_embed_v.num_patches ** .5), cls_token=False)
self.pos_embed_v.data.copy_(torch.from_numpy(pos_embed_v).float().unsqueeze(0))
w = self.patch_embed_a.proj.weight.data
torch.nn.init.xavier_uniform_(w.view([w.shape[0], -1]))
w = self.patch_embed_v.proj.weight.data
torch.nn.init.xavier_uniform_(w.view([w.shape[0], -1]))
torch.nn.init.normal_(self.modality_a, std=.02)
torch.nn.init.normal_(self.modality_v, std=.02)
self.apply(self._init_weights)
def _init_weights(self, m):
if isinstance(m, nn.Linear):
# we use xavier_uniform following official JAX ViT:
torch.nn.init.xavier_uniform_(m.weight)
if isinstance(m, nn.Linear) and m.bias is not None:
nn.init.constant_(m.bias, 0)
elif isinstance(m, nn.LayerNorm):
nn.init.constant_(m.bias, 0)
nn.init.constant_(m.weight, 1.0)
def forward(self, a, v, mode):
# multi-modal fine-tuning, our default method for fine-tuning
if mode == 'multimodal':
a = a.unsqueeze(1)
a = a.transpose(2, 3)
a = self.patch_embed_a(a)
a = a + self.pos_embed_a
a = a + self.modality_a
v = self.patch_embed_v(v)
v = v + self.pos_embed_v
v = v + self.modality_v
for blk in self.blocks_a:
a = blk(a)
for blk in self.blocks_v:
v = blk(v)
x = torch.cat((a, v), dim=1)
for blk in self.blocks_u:
x = blk(x)
x = self.norm(x)
x = x.mean(dim=1)
x = self.mlp_head(x)
return x
# finetune with only audio (and inference with only audio when the model is finetuned with only audio)
elif mode == 'audioonly':
a = a.unsqueeze(1)
a = a.transpose(2, 3)
a = self.patch_embed_a(a)
a = a + self.pos_embed_a
a = a + self.modality_a
for blk in self.blocks_a:
a = blk(a)
# note here uses the 'a' normalization, it is used in both training and inference, so it is fine
for blk in self.blocks_u:
a = blk(a, 'a')
a = self.norm_a(a)
x = a.mean(dim=1)
x = self.mlp_head(x)
return x
# finetune with only image (and inference with only audio when the model is finetuned with only image)
elif mode == 'videoonly':
v = self.patch_embed_v(v)
v = v + self.pos_embed_v
v = v + self.modality_v
for blk in self.blocks_v:
v = blk(v)
# note here uses the 'v' normalization, it is used in both training and inference, so it is fine
for blk in self.blocks_u:
v = blk(v, 'v')
v = self.norm_v(v)
x = v.mean(dim=1)
x = self.mlp_head(x)
return x
# used in case that the model is finetuned with both modality, but in inference only audio is given
elif mode == 'missingaudioonly':
a = a.unsqueeze(1)
a = a.transpose(2, 3)
a = self.patch_embed_a(a)
a = a + self.pos_embed_a
a = a + self.modality_a
for blk in self.blocks_a:
a = blk(a)
# two forward passes to the block_u, one with modality-specific normalization, another with unified normalization
u = a
for blk in self.blocks_u:
u = blk(u) # note here use unified normalization
u = self.norm(u)
u = u.mean(dim=1)
for blk in self.blocks_u:
a = blk(a, 'a') # note here use modality-specific normalization
a = self.norm_a(a)
a = a.mean(dim=1)
# average the output of the two forward passes
x = (u + a) / 2
x = self.mlp_head(x)
return x
# used in case that the model is fine-tuned with both modality, but in inference only image is given
elif mode == 'missingvideoonly':
v = self.patch_embed_v(v)
v = v + self.pos_embed_v
v = v + self.modality_v
for blk in self.blocks_v:
v = blk(v)
# two forward passes to the block_u, one with modality-specific normalization, another with unified normalization
u = v
for blk in self.blocks_u:
u = blk(u) # note here use unified normalization
u = self.norm(u)
u = u.mean(dim=1)
for blk in self.blocks_u:
v = blk(v, 'v') # note here use modality-specific normalization
v = self.norm_v(v)
v = v.mean(dim=1)
# average the output of the two forward passes
x = (u + v) / 2
x = self.mlp_head(x)
return x
# for retrieval
def forward_feat(self, a, v, mode='av'):
# return both audio and visual
if mode == 'av':
a = a.unsqueeze(1)
a = a.transpose(2, 3)
a = self.patch_embed_a(a)
a = a + self.pos_embed_a
a = a + self.modality_a
v = self.patch_embed_v(v)
v = v + self.pos_embed_v
v = v + self.modality_v
for blk in self.blocks_a:
a = blk(a)
for blk in self.blocks_v:
v = blk(v)
for blk in self.blocks_u:
a = blk(a, 'a')
a = self.norm_a(a)
for blk in self.blocks_u:
v = blk(v, 'v')
v = self.norm_v(v)
return a, v
# return only audio
if mode == 'a':
a = a.unsqueeze(1)
a = a.transpose(2, 3)
a = self.patch_embed_a(a)
a = a + self.pos_embed_a
a = a + self.modality_a
for blk in self.blocks_a:
a = blk(a)
for blk in self.blocks_u:
a = blk(a, 'a')
a = self.norm_a(a)
return a
def _wav2fbank(filename):
waveform, sr = torchaudio.load(filename)
waveform = torchaudio.functional.resample(
waveform, orig_freq=sr, new_freq=16000
)
waveform = waveform - waveform.mean()
waveform
print(sr)
fbank = torchaudio.compliance.kaldi.fbank(
waveform,
htk_compat=True,
sample_frequency=sr,
use_energy=False,
window_type='hanning',
num_mel_bins=128,
dither=0.0,
frame_shift=10)
target_length = 1024
n_frames = fbank.shape[0]
p = target_length - n_frames
# cut and pad
if p > 0:
m = torch.nn.ZeroPad2d((0, 0, 0, p))
fbank = m(fbank)
elif p < 0:
fbank = fbank[0:target_length, :]
return fbank
def pca(image_feats_list, dim=3, fit_pca=None):
from sklearn.decomposition import PCA
device = image_feats_list[0].device
def flatten(tensor, target_size=None):
if target_size is not None and fit_pca is None:
F.interpolate(tensor, (target_size, target_size), mode="bilinear")
B, C, H, W = tensor.shape
return feats.permute(1, 0, 2, 3).reshape(C, B * H * W).permute(1, 0).detach().cpu()
if len(image_feats_list) > 1 and fit_pca is None:
target_size = image_feats_list[0].shape[2]
else:
target_size = None
flattened_feats = []
for feats in image_feats_list:
flattened_feats.append(flatten(feats, target_size))
x = torch.cat(flattened_feats, dim=0)
if fit_pca is None:
fit_pca = PCA(n_components=dim).fit(x)
reduced_feats = []
for feats in image_feats_list:
x_red = torch.from_numpy(fit_pca.transform(flatten(feats)))
x_red -= x_red.min(dim=0, keepdim=True).values
x_red /= x_red.max(dim=0, keepdim=True).values
B, C, H, W = feats.shape
reduced_feats.append(x_red.reshape(B, H, W, dim).permute(0, 3, 1, 2).to(device))
return reduced_feats, fit_pca
class CAVMAEAudioFeaturizer(nn.Module):
def __init__(self, output_path, model_name="base", model=None):
super().__init__()
if model is not None:
self.model = model
else:
if model_name == "base":
model_path = os.path.join(output_path, 'models/audio_model.21.pth')
else:
raise ValueError(f"Unknown model type {model_name}")
audio_model = CAVMAE(
audio_length=1024,
modality_specific_depth=11,
norm_pix_loss=True,
tr_pos=False)
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
mdl_weight = torch.load(model_path, map_location=device)
audio_model = torch.nn.DataParallel(audio_model)
audio_model.load_state_dict(mdl_weight, strict=True)
self.model = audio_model.module.cuda()
def forward(self, audio, include_cls):
cls_token = None
patch_tokens = self.model.forward_audio(audio.squeeze(1))
if include_cls:
return patch_tokens, cls_token
else:
return patch_tokens
class CAVMAEImageFeaturizer(nn.Module):
def __init__(self, output_path, model=None, model_name="base"):
super().__init__()
if model is not None:
self.model: CAVMAE = model
else:
if model_name == "base":
model_path = os.path.join(output_path, 'models/audio_model.21.pth')
else:
raise ValueError(f"Unknown model type {model_name}")
audio_model = CAVMAE(
audio_length=1024,
modality_specific_depth=11,
norm_pix_loss=True,
tr_pos=False)
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
mdl_weight = torch.load(model_path, map_location=device)
audio_model = torch.nn.DataParallel(audio_model)
audio_model.load_state_dict(mdl_weight, strict=True)
self.model: CAVMAE = audio_model.module.cuda()
def forward(self, image, include_cls):
cls_token = None
patch_tokens = self.model.forward_video(image)
if include_cls:
return patch_tokens, cls_token
else:
return patch_tokens
if __name__ == "__main__":
model_path = os.path.join("../../", 'models/audio_model.21.pth')
audio_model = CAVMAE(
audio_length=1024,
modality_specific_depth=11,
norm_pix_loss=True,
tr_pos=False)
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
mdl_weight = torch.load(model_path, map_location=device)
audio_model = torch.nn.DataParallel(audio_model)
audio_model.load_state_dict(mdl_weight, strict=True)
model: CAVMAE = audio_model.module.cuda()
image_paths = ["../../samples/dog_image.jpg", "../../samples/car_image.jpg", "../../samples/bird_image.jpg"]
audio_paths = ["../../samples/dog_audio.wav", "../../samples/car_audio.wav", "../../samples/bird_audio.wav"]
images = []
audios = []
for image_path in image_paths:
image = Image.open(image_path).convert("RGB")
preprocess = T.Compose([
T.Resize(224, interpolation=Image.BICUBIC),
T.CenterCrop(224),
T.ToTensor(),
T.Normalize(
mean=[0.4850, 0.4560, 0.4060],
std=[0.2290, 0.2240, 0.2250]
)])
images.append(preprocess(image).unsqueeze(0).cuda())
for audio_path in audio_paths:
a = _wav2fbank(audio_path).cuda().unsqueeze(0)
a = (a + 5.081) / (4.4849)
audios.append(a)
audio_feats, image_feats = model.forward_feat(
torch.cat(audios, dim=0), torch.cat(images, dim=0))
audio_feats = F.normalize(audio_feats.mean(1), dim=1)
image_feats = F.normalize(image_feats.mean(1), dim=1)
sims = torch.einsum("bc,dc->bd", image_feats, audio_feats)
print(sims)
print("here")
# a_feat = F.normalize(a_feat, dim=1)
# v_feat = F.normalize(v_feat, dim=1)
# [red_v_feat, red_a_feat], fit_pca = pca([v_feat, a_feat])
#
# [red_v_feat], fit_pca = pca([v_feat])
# [red_a_feat], fit_pca = pca([a_feat])
#
# import matplotlib.pyplot as plt
#
# fig, ax = plt.subplots(1, 2, figsize=(2 * 5, 5))
# ax[0].imshow(red_v_feat[0].permute(1, 2, 0).cpu())
# ax[1].imshow(red_a_feat[0].permute(1, 2, 0).cpu())
# plt.tight_layout()
# plt.show()
# print("here")
|