File size: 5,524 Bytes
e6d4b46
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
# Author: David Harwath
import torch
import torch.nn as nn
import torch.nn.functional
import torch.nn.functional
import torch.nn.functional as F
import torch.utils.model_zoo as model_zoo
import torchvision.models as imagemodels


class Davenet(nn.Module):
    def __init__(self, embedding_dim=1024):
        super(Davenet, self).__init__()
        self.embedding_dim = embedding_dim
        self.batchnorm1 = nn.BatchNorm2d(1)
        self.conv1 = nn.Conv2d(1, 128, kernel_size=(40, 1), stride=(1, 1), padding=(0, 0))
        self.conv2 = nn.Conv2d(128, 256, kernel_size=(1, 11), stride=(1, 1), padding=(0, 5))
        self.conv3 = nn.Conv2d(256, 512, kernel_size=(1, 17), stride=(1, 1), padding=(0, 8))
        self.conv4 = nn.Conv2d(512, 512, kernel_size=(1, 17), stride=(1, 1), padding=(0, 8))
        self.conv5 = nn.Conv2d(512, embedding_dim, kernel_size=(1, 17), stride=(1, 1), padding=(0, 8))
        self.pool = nn.MaxPool2d(kernel_size=(1, 3), stride=(1, 2), padding=(0, 1))

    def forward(self, x):
        if x.dim() == 3:
            x = x.unsqueeze(1)
        x = self.batchnorm1(x)
        x = F.relu(self.conv1(x))
        x = F.relu(self.conv2(x))
        x = self.pool(x)
        x = F.relu(self.conv3(x))
        x = self.pool(x)
        x = F.relu(self.conv4(x))
        x = self.pool(x)
        x = F.relu(self.conv5(x))
        x = self.pool(x)
        x = x.squeeze(2)
        return x


class Resnet18(imagemodels.ResNet):
    def __init__(self, embedding_dim=1024, pretrained=False):
        super(Resnet18, self).__init__(imagemodels.resnet.BasicBlock, [2, 2, 2, 2])
        if pretrained:
            self.load_state_dict(model_zoo.load_url(imagemodels.resnet.model_urls['resnet18']))
        self.avgpool = None
        self.fc = None
        self.embedder = nn.Conv2d(512, embedding_dim, kernel_size=1, stride=1, padding=0)
        self.embedding_dim = embedding_dim
        self.pretrained = pretrained

    def forward(self, x):
        x = self.conv1(x)
        x = self.bn1(x)
        x = self.relu(x)
        x = self.maxpool(x)
        x = self.layer1(x)
        x = self.layer2(x)
        x = self.layer3(x)
        x = self.layer4(x)
        x = self.embedder(x)
        return x


class Resnet34(imagemodels.ResNet):
    def __init__(self, embedding_dim=1024, pretrained=False):
        super(Resnet34, self).__init__(imagemodels.resnet.BasicBlock, [3, 4, 6, 3])
        if pretrained:
            self.load_state_dict(model_zoo.load_url(imagemodels.resnet.model_urls['resnet34']))
        self.avgpool = None
        self.fc = None
        self.embedder = nn.Conv2d(512, embedding_dim, kernel_size=1, stride=1, padding=0)

    def forward(self, x):
        x = self.conv1(x)
        x = self.bn1(x)
        x = self.relu(x)
        x = self.maxpool(x)
        x = self.layer1(x)
        x = self.layer2(x)
        x = self.layer3(x)
        x = self.layer4(x)
        x = self.embedder(x)
        return x


class Resnet50(imagemodels.ResNet):
    def __init__(self, embedding_dim=1024, pretrained=False):
        super(Resnet50, self).__init__(imagemodels.resnet.Bottleneck, [3, 4, 6, 3])
        if pretrained:
            self.load_state_dict(model_zoo.load_url(imagemodels.resnet.model_urls['resnet50']))
        self.avgpool = None
        self.fc = None
        self.embedder = nn.Conv2d(2048, embedding_dim, kernel_size=1, stride=1, padding=0)

    def forward(self, x):
        x = self.conv1(x)
        x = self.bn1(x)
        x = self.relu(x)
        x = self.maxpool(x)
        x = self.layer1(x)
        x = self.layer2(x)
        x = self.layer3(x)
        x = self.layer4(x)
        x = self.embedder(x)
        return x


class VGG16(nn.Module):
    def __init__(self, embedding_dim=1024, pretrained=False):
        super(VGG16, self).__init__()
        seed_model = imagemodels.__dict__['vgg16'](pretrained=pretrained).features
        seed_model = nn.Sequential(*list(seed_model.children())[:-1])  # remove final maxpool
        last_layer_index = len(list(seed_model.children()))
        seed_model.add_module(str(last_layer_index),
                              nn.Conv2d(512, embedding_dim, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1)))
        self.image_model = seed_model

    def forward(self, x):
        x = self.image_model(x)
        return x


def prep(dict):
    return {k.replace("module.", ""): v for k, v in dict.items()}


class DavenetAudioFeaturizer(nn.Module):

    def __init__(self):
        super().__init__()
        self.audio_model = Davenet()
        self.audio_model.load_state_dict(prep(torch.load("../models/davenet_pt_audio.pth")))

    def forward(self, audio, include_cls):
        patch_tokens = self.audio_model(audio).unsqueeze(2)

        if include_cls:
            return patch_tokens, None
        else:
            return patch_tokens

    def get_last_params(self):
        return []


class DavenetImageFeaturizer(nn.Module):

    def __init__(self):
        super().__init__()
        self.image_model = VGG16()
        self.image_model.load_state_dict(prep(torch.load("../models/davenet_pt_image.pth")))

    def forward(self, image, include_cls):
        patch_tokens = self.image_model(image)

        if include_cls:
            return patch_tokens, None
        else:
            return patch_tokens

    def get_last_params(self):
        return []