Spaces:
Running
Running
import math | |
import os | |
import warnings | |
from functools import partial | |
import numpy as np | |
import torch | |
import torch.nn as nn | |
import torch.nn.functional as F | |
import torchaudio | |
from timm.models.layers import to_2tuple | |
from torch.utils.data import Dataset | |
from torchaudio.functional import resample | |
import pickle | |
def _no_grad_trunc_normal_(tensor, mean, std, a, b): | |
# Cut & paste from PyTorch official master until it's in a few official releases - RW | |
# Method based on https://people.sc.fsu.edu/~jburkardt/presentations/truncated_normal.pdf | |
def norm_cdf(x): | |
# Computes standard normal cumulative distribution function | |
return (1. + math.erf(x / math.sqrt(2.))) / 2. | |
if (mean < a - 2 * std) or (mean > b + 2 * std): | |
warnings.warn("mean is more than 2 std from [a, b] in nn.init.trunc_normal_. " | |
"The distribution of values may be incorrect.", | |
stacklevel=2) | |
with torch.no_grad(): | |
# Values are generated by using a truncated uniform distribution and | |
# then using the inverse CDF for the normal distribution. | |
# Get upper and lower cdf values | |
l = norm_cdf((a - mean) / std) | |
u = norm_cdf((b - mean) / std) | |
# Uniformly fill tensor with values from [l, u], then translate to | |
# [2l-1, 2u-1]. | |
tensor.uniform_(2 * l - 1, 2 * u - 1) | |
# Use inverse cdf transform for normal distribution to get truncated | |
# standard normal | |
tensor.erfinv_() | |
# Transform to proper mean, std | |
tensor.mul_(std * math.sqrt(2.)) | |
tensor.add_(mean) | |
# Clamp to ensure it's in the proper range | |
tensor.clamp_(min=a, max=b) | |
return tensor | |
def trunc_normal_(tensor, mean=0., std=1., a=-2., b=2.): | |
# type: (Tensor, float, float, float, float) -> Tensor | |
r"""Fills the input Tensor with values drawn from a truncated | |
normal distribution. The values are effectively drawn from the | |
normal distribution :math:`\mathcal{N}(\text{mean}, \text{std}^2)` | |
with values outside :math:`[a, b]` redrawn until they are within | |
the bounds. The method used for generating the random values works | |
best when :math:`a \leq \text{mean} \leq b`. | |
Args: | |
tensor: an n-dimensional `torch.Tensor` | |
mean: the mean of the normal distribution | |
std: the standard deviation of the normal distribution | |
a: the minimum cutoff value | |
b: the maximum cutoff value | |
Examples: | |
>>> w = torch.empty(3, 5) | |
>>> nn.init.trunc_normal_(w) | |
""" | |
return _no_grad_trunc_normal_(tensor, mean, std, a, b) | |
class Mlp(nn.Module): | |
def __init__(self, in_features, hidden_features=None, out_features=None, act_layer=nn.GELU, drop=0.): | |
super().__init__() | |
out_features = out_features or in_features | |
hidden_features = hidden_features or in_features | |
self.fc1 = nn.Linear(in_features, hidden_features) | |
self.act = act_layer() | |
self.fc2 = nn.Linear(hidden_features, out_features) | |
self.drop = nn.Dropout(drop) | |
def forward(self, x): | |
x = self.fc1(x) | |
x = self.act(x) | |
x = self.drop(x) | |
x = self.fc2(x) | |
x = self.drop(x) | |
return x | |
class Attention(nn.Module): | |
def __init__(self, dim, num_heads=8, qkv_bias=False, qk_scale=None, attn_drop=0., proj_drop=0.): | |
super().__init__() | |
self.num_heads = num_heads | |
head_dim = dim // num_heads | |
# NOTE scale factor was wrong in my original version, can set manually to be compat with prev weights | |
self.scale = qk_scale or head_dim ** -0.5 | |
self.qkv = nn.Linear(dim, dim * 3, bias=qkv_bias) | |
self.attn_drop = nn.Dropout(attn_drop) | |
self.proj = nn.Linear(dim, dim) | |
self.proj_drop = nn.Dropout(proj_drop) | |
def forward(self, x): | |
B, N, C = x.shape | |
qkv = self.qkv(x).reshape(B, N, 3, self.num_heads, C // self.num_heads).permute(2, 0, 3, 1, 4) | |
q, k, v = qkv[0], qkv[1], qkv[2] # make torchscript happy (cannot use tensor as tuple) | |
attn = (q @ k.transpose(-2, -1)) * self.scale | |
attn = attn.softmax(dim=-1) | |
attn = self.attn_drop(attn) | |
x = (attn @ v).transpose(1, 2).reshape(B, N, C) | |
x = self.proj(x) | |
x = self.proj_drop(x) | |
return x | |
def drop_path(x, drop_prob: float = 0., training: bool = False): | |
"""Drop paths (Stochastic Depth) per sample (when applied in main path of residual blocks). | |
This is the same as the DropConnect impl I created for EfficientNet, etc networks, however, | |
the original name is misleading as 'Drop Connect' is a different form of dropout in a separate paper... | |
See discussion: https://github.com/tensorflow/tpu/issues/494#issuecomment-532968956 ... I've opted for | |
changing the layer and argument names to 'drop path' rather than mix DropConnect as a layer name and use | |
'survival rate' as the argument. | |
""" | |
if drop_prob == 0. or not training: | |
return x | |
keep_prob = 1 - drop_prob | |
shape = (x.shape[0],) + (1,) * (x.ndim - 1) # work with diff dim tensors, not just 2D ConvNets | |
random_tensor = keep_prob + torch.rand(shape, dtype=x.dtype, device=x.device) | |
random_tensor.floor_() # binarize | |
output = x.div(keep_prob) * random_tensor | |
return output | |
class DropPath(nn.Module): | |
"""Drop paths (Stochastic Depth) per sample (when applied in main path of residual blocks). | |
""" | |
def __init__(self, drop_prob=None): | |
super(DropPath, self).__init__() | |
self.drop_prob = drop_prob | |
def forward(self, x): | |
return drop_path(x, self.drop_prob, self.training) | |
class Block(nn.Module): | |
def __init__(self, dim, num_heads, mlp_ratio=4., qkv_bias=False, qk_scale=None, drop=0., attn_drop=0., | |
drop_path=0., act_layer=nn.GELU, norm_layer=nn.LayerNorm): | |
super().__init__() | |
self.norm1 = norm_layer(dim) | |
self.attn = Attention( | |
dim, num_heads=num_heads, qkv_bias=qkv_bias, qk_scale=qk_scale, attn_drop=attn_drop, proj_drop=drop) | |
# NOTE: drop path for stochastic depth, we shall see if this is better than dropout here | |
self.drop_path = DropPath(drop_path) if drop_path > 0. else nn.Identity() | |
self.norm2 = norm_layer(dim) | |
mlp_hidden_dim = int(dim * mlp_ratio) | |
self.mlp = Mlp(in_features=dim, hidden_features=mlp_hidden_dim, act_layer=act_layer, drop=drop) | |
def forward(self, x): | |
x = x + self.drop_path(self.attn(self.norm1(x))) | |
x = x + self.drop_path(self.mlp(self.norm2(x))) | |
return x | |
class PatchEmbed(nn.Module): | |
""" Image to Patch Embedding | |
""" | |
def __init__(self, img_size=224, patch_size=16, in_chans=3, embed_dim=768): | |
super().__init__() | |
img_size = to_2tuple(img_size) | |
patch_size = to_2tuple(patch_size) | |
num_patches = (img_size[1] // patch_size[1]) * (img_size[0] // patch_size[0]) | |
self.patch_hw = (img_size[1] // patch_size[1], img_size[0] // patch_size[0]) | |
self.img_size = img_size | |
self.patch_size = patch_size | |
self.num_patches = num_patches | |
self.proj = nn.Conv2d(in_chans, embed_dim, kernel_size=patch_size, stride=patch_size) | |
def forward(self, x): | |
B, C, H, W = x.shape | |
# FIXME look at relaxing size constraints | |
# assert H == self.img_size[0] and W == self.img_size[1], \ | |
# f"Input image size ({H}*{W}) doesn't match model ({self.img_size[0]}*{self.img_size[1]})." | |
x = self.proj(x).flatten(2).transpose(1, 2) | |
return x | |
class HybridEmbed(nn.Module): | |
""" CNN Feature Map Embedding | |
Extract feature map from CNN, flatten, project to embedding dim. | |
""" | |
def __init__(self, backbone, img_size=224, feature_size=None, in_chans=3, embed_dim=768): | |
super().__init__() | |
assert isinstance(backbone, nn.Module) | |
img_size = to_2tuple(img_size) | |
self.img_size = img_size | |
self.backbone = backbone | |
if feature_size is None: | |
with torch.no_grad(): | |
# FIXME this is hacky, but most reliable way of determining the exact dim of the output feature | |
# map for all networks, the feature metadata has reliable channel and stride info, but using | |
# stride to calc feature dim requires info about padding of each stage that isn't captured. | |
training = backbone.training | |
if training: | |
backbone.eval() | |
o = self.backbone(torch.zeros(1, in_chans, img_size[0], img_size[1]))[-1] | |
feature_size = o.shape[-2:] | |
feature_dim = o.shape[1] | |
backbone.train(training) | |
else: | |
feature_size = to_2tuple(feature_size) | |
feature_dim = self.backbone.feature_info.channels()[-1] | |
self.num_patches = feature_size[0] * feature_size[1] | |
self.proj = nn.Linear(feature_dim, embed_dim) | |
def forward(self, x): | |
x = self.backbone(x)[-1] | |
x = x.flatten(2).transpose(1, 2) | |
x = self.proj(x) | |
return x | |
class TimmVisionTransformer(nn.Module): | |
""" Vision Transformer with support for patch or hybrid CNN input stage | |
""" | |
def __init__(self, img_size=224, patch_size=16, in_chans=3, num_classes=1000, embed_dim=768, depth=12, | |
num_heads=12, mlp_ratio=4., qkv_bias=False, qk_scale=None, drop_rate=0., attn_drop_rate=0., | |
drop_path_rate=0., hybrid_backbone=None, norm_layer=nn.LayerNorm): | |
super().__init__() | |
self.num_classes = num_classes | |
self.num_features = self.embed_dim = embed_dim # num_features for consistency with other models | |
if hybrid_backbone is not None: | |
self.patch_embed = HybridEmbed( | |
hybrid_backbone, img_size=img_size, in_chans=in_chans, embed_dim=embed_dim) | |
else: | |
self.patch_embed = PatchEmbed( | |
img_size=img_size, patch_size=patch_size, in_chans=in_chans, embed_dim=embed_dim) | |
num_patches = self.patch_embed.num_patches | |
self.cls_token = nn.Parameter(torch.zeros(1, 1, embed_dim)) | |
self.pos_embed = nn.Parameter(torch.zeros(1, num_patches + 1, embed_dim)) | |
self.pos_drop = nn.Dropout(p=drop_rate) | |
dpr = [x.item() for x in torch.linspace(0, drop_path_rate, depth)] # stochastic depth decay rule | |
self.blocks = nn.ModuleList([ | |
Block( | |
dim=embed_dim, num_heads=num_heads, mlp_ratio=mlp_ratio, qkv_bias=qkv_bias, qk_scale=qk_scale, | |
drop=drop_rate, attn_drop=attn_drop_rate, drop_path=dpr[i], norm_layer=norm_layer) | |
for i in range(depth)]) | |
self.norm = norm_layer(embed_dim) | |
# NOTE as per official impl, we could have a pre-logits representation dense layer + tanh here | |
# self.repr = nn.Linear(embed_dim, representation_size) | |
# self.repr_act = nn.Tanh() | |
# Classifier head | |
self.head = nn.Linear(embed_dim, num_classes) if num_classes > 0 else nn.Identity() | |
trunc_normal_(self.pos_embed, std=.02) | |
trunc_normal_(self.cls_token, std=.02) | |
self.apply(self._init_weights) | |
def _init_weights(self, m): | |
if isinstance(m, nn.Linear): | |
trunc_normal_(m.weight, std=.02) | |
if isinstance(m, nn.Linear) and m.bias is not None: | |
nn.init.constant_(m.bias, 0) | |
elif isinstance(m, nn.LayerNorm): | |
nn.init.constant_(m.bias, 0) | |
nn.init.constant_(m.weight, 1.0) | |
def no_weight_decay(self): | |
return {'pos_embed', 'cls_token'} | |
def get_classifier(self): | |
return self.head | |
def reset_classifier(self, num_classes, global_pool=''): | |
self.num_classes = num_classes | |
self.head = nn.Linear(self.embed_dim, num_classes) if num_classes > 0 else nn.Identity() | |
def forward_features(self, x): | |
B = x.shape[0] | |
x = self.patch_embed(x) | |
cls_tokens = self.cls_token.expand(B, -1, -1) # stole cls_tokens impl from Phil Wang, thanks | |
x = torch.cat((cls_tokens, x), dim=1) | |
x = x + self.pos_embed | |
x = self.pos_drop(x) | |
for blk in self.blocks: | |
x = blk(x) | |
x = self.norm(x) | |
return x[:, 0] | |
def forward(self, x): | |
x = self.forward_features(x) | |
x = self.head(x) | |
return x | |
class VisionTransformer(TimmVisionTransformer): | |
""" Vision Transformer with support for global average pooling | |
""" | |
def __init__(self, **kwargs): | |
super(VisionTransformer, self).__init__(**kwargs) | |
norm_layer = kwargs['norm_layer'] | |
embed_dim = kwargs['embed_dim'] | |
self.fc_norm = norm_layer(embed_dim) | |
del self.norm # remove the original norm | |
def interpolate_pos_encoding(self, x, embed): | |
new_patches = x.shape[1] | |
old_patches = embed.shape[1] | |
w = 8 | |
h = int(new_patches / w) | |
if new_patches == old_patches: | |
return embed | |
dim = x.shape[-1] | |
pos_embed = nn.functional.interpolate( | |
embed.reshape(1, 64, 8, dim).permute(0, 3, 1, 2), | |
size=(h, w), | |
mode='bicubic', | |
) | |
pos_embed = pos_embed.permute(0, 2, 3, 1).view(1, -1, dim) | |
return pos_embed | |
def forward(self, x): | |
B = x.shape[0] | |
x = self.patch_embed(x) | |
x = x + self.interpolate_pos_encoding(x, self.pos_embed[:, 1:, :]) | |
cls_token = self.cls_token + self.pos_embed[:, :1, :] | |
cls_tokens = cls_token.expand(B, -1, -1) # stole cls_tokens impl from Phil Wang, thanks | |
x = torch.cat((cls_tokens, x), dim=1) | |
x = self.pos_drop(x) | |
for blk in self.blocks: | |
x = blk(x) | |
# x = x[:, 1:, :].mean(dim=1) # global pool without cls token | |
# outcome = self.fc_norm(x) | |
return x[:, 1:, :].reshape(B, -1, 8, 768).permute(0, 3, 2, 1), x[:, 0] | |
class NewPatchEmbed(nn.Module): | |
""" Flexible Image to Patch Embedding | |
""" | |
def __init__(self, img_size=224, patch_size=16, in_chans=3, embed_dim=768, stride=10): | |
super().__init__() | |
img_size = to_2tuple(img_size) | |
patch_size = to_2tuple(patch_size) | |
stride = to_2tuple(stride) | |
self.img_size = img_size | |
self.patch_size = patch_size | |
self.proj = nn.Conv2d(in_chans, embed_dim, kernel_size=patch_size, stride=stride) # with overlapped patches | |
_, _, h, w = self.get_output_shape(img_size) # n, emb_dim, h, w | |
self.patch_hw = (h, w) | |
self.num_patches = h * w | |
def get_output_shape(self, img_size): | |
# todo: don't be lazy.. | |
return self.proj(torch.randn(1, 1, img_size[0], img_size[1])).shape | |
def forward(self, x): | |
x = self.proj(x) | |
x = x.flatten(2).transpose(1, 2) | |
return x | |
def pca(image_feats_list, dim=3, fit_pca=None): | |
from sklearn.decomposition import PCA | |
device = image_feats_list[0].device | |
def flatten(tensor, target_size=None): | |
if target_size is not None and fit_pca is None: | |
F.interpolate(tensor, (target_size, target_size), mode="bilinear") | |
B, C, H, W = tensor.shape | |
return feats.permute(1, 0, 2, 3).reshape(C, B * H * W).permute(1, 0).detach().cpu() | |
if len(image_feats_list) > 1 and fit_pca is None: | |
target_size = image_feats_list[0].shape[2] | |
else: | |
target_size = None | |
flattened_feats = [] | |
for feats in image_feats_list: | |
flattened_feats.append(flatten(feats, target_size)) | |
x = torch.cat(flattened_feats, dim=0) | |
if fit_pca is None: | |
fit_pca = PCA(n_components=dim, svd_solver="arpack").fit(np.nan_to_num(x.detach().numpy())) | |
reduced_feats = [] | |
for feats in image_feats_list: | |
x_red = torch.from_numpy(fit_pca.transform(flatten(feats))) | |
x_red -= x_red.min(dim=0, keepdim=True).values | |
x_red /= x_red.max(dim=0, keepdim=True).values | |
B, C, H, W = feats.shape | |
reduced_feats.append(x_red.reshape(B, H, W, dim).permute(0, 3, 1, 2).to(device)) | |
return reduced_feats, fit_pca | |
class AudiosetDataset(Dataset): | |
def __init__(self, audio_conf): | |
self.audio_conf = audio_conf | |
self.melbins = self.audio_conf.get('num_mel_bins') | |
self.dataset = self.audio_conf.get('dataset') | |
self.norm_mean = self.audio_conf.get('mean') | |
self.norm_std = self.audio_conf.get('std') | |
print('Dataset: {}, mean {:.3f} and std {:.3f}'.format(self.dataset, self.norm_mean, self.norm_std)) | |
print(f'size of dataset {self.__len__()}') | |
def _wav2fbank(self, filename): | |
sample_rate = 16000 | |
target_length = 10 | |
waveform, obs_sr = torchaudio.load(filename) | |
waveform = waveform[0] | |
if obs_sr != sample_rate: | |
waveform = resample(waveform, obs_sr, sample_rate) | |
original_length = waveform.shape[0] | |
padding = target_length * sample_rate - original_length | |
if padding > 0: | |
m = torch.nn.ZeroPad2d((0, padding)) | |
waveform = m(waveform) | |
else: | |
waveform = waveform[:target_length * sample_rate] | |
waveform = waveform - waveform.mean() | |
# 498 128, 998, 128 | |
fbank = torchaudio.compliance.kaldi.fbank( | |
waveform.unsqueeze(0), | |
htk_compat=True, | |
sample_frequency=sample_rate, | |
use_energy=False, | |
window_type='hanning', | |
num_mel_bins=128, | |
dither=0.0, | |
frame_shift=10) | |
normed_fbank = (fbank - self.norm_mean) / (self.norm_std * 2) | |
return normed_fbank | |
def __getitem__(self, index): | |
datum = {"wav": "../../samples/example.wav"} | |
fbank = self._wav2fbank(datum['wav']) | |
fbank = fbank.transpose(0, 1).unsqueeze(0) # 1, 128, 1024 (...,freq,time) | |
fbank = torch.transpose(fbank.squeeze(), 0, 1) # time, freq | |
# the output fbank shape is [time_frame_num, frequency_bins], e.g., [1024, 128] | |
return fbank.unsqueeze(0) | |
def __len__(self): | |
return 1 | |
class AudioMAE(nn.Module): | |
def __init__(self, output_path, finetuned): | |
super().__init__() | |
# build model | |
model = VisionTransformer( | |
patch_size=16, | |
embed_dim=768, | |
depth=12, | |
num_heads=12, | |
mlp_ratio=4, | |
qkv_bias=True, | |
norm_layer=partial(nn.LayerNorm, eps=1e-6), | |
num_classes=527, | |
drop_path_rate=0.1) | |
img_size = (1024, 128) # 1024, 128 | |
emb_dim = 768 | |
model.patch_embed = NewPatchEmbed( | |
img_size=img_size, patch_size=(16, 16), in_chans=1, embed_dim=emb_dim, stride=16) | |
num_patches = model.patch_embed.num_patches | |
model.pos_embed = nn.Parameter(torch.zeros(1, num_patches + 1, emb_dim), requires_grad=False) | |
if finetuned: | |
fn = "audiomae_finetuned.pth" | |
else: | |
fn = "audiomae.pth" | |
checkpoint = torch.load(os.path.join(output_path, 'models', fn), map_location='cpu') | |
checkpoint_model = checkpoint['model'] | |
state_dict = model.state_dict() | |
for k in ['head.weight', 'head.bias']: | |
if k in checkpoint_model and checkpoint_model[k].shape != state_dict[k].shape: | |
print(f"Removing key {k} from pretrained checkpoint") | |
del checkpoint_model[k] | |
msg = model.load_state_dict(checkpoint_model, strict=False) | |
print(msg) | |
model = model.eval() | |
self.model = model | |
self.config = dict(output_path=output_path, finetuned=finetuned) | |
def forward(self, audio, include_cls): | |
patch_tokens, cls_token = self.model(audio) | |
if include_cls: | |
return patch_tokens, cls_token | |
else: | |
return patch_tokens | |
if __name__ == '__main__': | |
import os | |
device = torch.device("cuda:2") | |
torch.manual_seed(0) | |
np.random.seed(0) | |
model = AudioMAE("../../", True).to(device) | |
audio_conf_val = { | |
'num_mel_bins': 128, | |
'target_length': 1024, | |
'dataset': "audioset", | |
'mode': 'val', | |
'mean': -4.2677393, | |
'std': 4.5689974, | |
} | |
dataset = AudiosetDataset(audio_conf=audio_conf_val) | |
batch = dataset[0].unsqueeze(0).to(device) | |
embeddings = model(batch, include_cls=False) | |
import matplotlib.pyplot as plt | |
with torch.no_grad(): | |
[pca_feats], _ = pca([embeddings]) | |
plt.imshow(pca_feats.cpu().squeeze(0).permute(1, 2, 0)) | |
plt.show() | |
print("here") | |
print("here") | |