lorocksUMD's picture
Upload 32 files
e6d4b46 verified
import math
import os
import warnings
from functools import partial
import numpy as np
import torch
import torch.nn as nn
import torch.nn.functional as F
import torchaudio
from timm.models.layers import to_2tuple
from torch.utils.data import Dataset
from torchaudio.functional import resample
import pickle
def _no_grad_trunc_normal_(tensor, mean, std, a, b):
# Cut & paste from PyTorch official master until it's in a few official releases - RW
# Method based on https://people.sc.fsu.edu/~jburkardt/presentations/truncated_normal.pdf
def norm_cdf(x):
# Computes standard normal cumulative distribution function
return (1. + math.erf(x / math.sqrt(2.))) / 2.
if (mean < a - 2 * std) or (mean > b + 2 * std):
warnings.warn("mean is more than 2 std from [a, b] in nn.init.trunc_normal_. "
"The distribution of values may be incorrect.",
stacklevel=2)
with torch.no_grad():
# Values are generated by using a truncated uniform distribution and
# then using the inverse CDF for the normal distribution.
# Get upper and lower cdf values
l = norm_cdf((a - mean) / std)
u = norm_cdf((b - mean) / std)
# Uniformly fill tensor with values from [l, u], then translate to
# [2l-1, 2u-1].
tensor.uniform_(2 * l - 1, 2 * u - 1)
# Use inverse cdf transform for normal distribution to get truncated
# standard normal
tensor.erfinv_()
# Transform to proper mean, std
tensor.mul_(std * math.sqrt(2.))
tensor.add_(mean)
# Clamp to ensure it's in the proper range
tensor.clamp_(min=a, max=b)
return tensor
def trunc_normal_(tensor, mean=0., std=1., a=-2., b=2.):
# type: (Tensor, float, float, float, float) -> Tensor
r"""Fills the input Tensor with values drawn from a truncated
normal distribution. The values are effectively drawn from the
normal distribution :math:`\mathcal{N}(\text{mean}, \text{std}^2)`
with values outside :math:`[a, b]` redrawn until they are within
the bounds. The method used for generating the random values works
best when :math:`a \leq \text{mean} \leq b`.
Args:
tensor: an n-dimensional `torch.Tensor`
mean: the mean of the normal distribution
std: the standard deviation of the normal distribution
a: the minimum cutoff value
b: the maximum cutoff value
Examples:
>>> w = torch.empty(3, 5)
>>> nn.init.trunc_normal_(w)
"""
return _no_grad_trunc_normal_(tensor, mean, std, a, b)
class Mlp(nn.Module):
def __init__(self, in_features, hidden_features=None, out_features=None, act_layer=nn.GELU, drop=0.):
super().__init__()
out_features = out_features or in_features
hidden_features = hidden_features or in_features
self.fc1 = nn.Linear(in_features, hidden_features)
self.act = act_layer()
self.fc2 = nn.Linear(hidden_features, out_features)
self.drop = nn.Dropout(drop)
def forward(self, x):
x = self.fc1(x)
x = self.act(x)
x = self.drop(x)
x = self.fc2(x)
x = self.drop(x)
return x
class Attention(nn.Module):
def __init__(self, dim, num_heads=8, qkv_bias=False, qk_scale=None, attn_drop=0., proj_drop=0.):
super().__init__()
self.num_heads = num_heads
head_dim = dim // num_heads
# NOTE scale factor was wrong in my original version, can set manually to be compat with prev weights
self.scale = qk_scale or head_dim ** -0.5
self.qkv = nn.Linear(dim, dim * 3, bias=qkv_bias)
self.attn_drop = nn.Dropout(attn_drop)
self.proj = nn.Linear(dim, dim)
self.proj_drop = nn.Dropout(proj_drop)
def forward(self, x):
B, N, C = x.shape
qkv = self.qkv(x).reshape(B, N, 3, self.num_heads, C // self.num_heads).permute(2, 0, 3, 1, 4)
q, k, v = qkv[0], qkv[1], qkv[2] # make torchscript happy (cannot use tensor as tuple)
attn = (q @ k.transpose(-2, -1)) * self.scale
attn = attn.softmax(dim=-1)
attn = self.attn_drop(attn)
x = (attn @ v).transpose(1, 2).reshape(B, N, C)
x = self.proj(x)
x = self.proj_drop(x)
return x
def drop_path(x, drop_prob: float = 0., training: bool = False):
"""Drop paths (Stochastic Depth) per sample (when applied in main path of residual blocks).
This is the same as the DropConnect impl I created for EfficientNet, etc networks, however,
the original name is misleading as 'Drop Connect' is a different form of dropout in a separate paper...
See discussion: https://github.com/tensorflow/tpu/issues/494#issuecomment-532968956 ... I've opted for
changing the layer and argument names to 'drop path' rather than mix DropConnect as a layer name and use
'survival rate' as the argument.
"""
if drop_prob == 0. or not training:
return x
keep_prob = 1 - drop_prob
shape = (x.shape[0],) + (1,) * (x.ndim - 1) # work with diff dim tensors, not just 2D ConvNets
random_tensor = keep_prob + torch.rand(shape, dtype=x.dtype, device=x.device)
random_tensor.floor_() # binarize
output = x.div(keep_prob) * random_tensor
return output
class DropPath(nn.Module):
"""Drop paths (Stochastic Depth) per sample (when applied in main path of residual blocks).
"""
def __init__(self, drop_prob=None):
super(DropPath, self).__init__()
self.drop_prob = drop_prob
def forward(self, x):
return drop_path(x, self.drop_prob, self.training)
class Block(nn.Module):
def __init__(self, dim, num_heads, mlp_ratio=4., qkv_bias=False, qk_scale=None, drop=0., attn_drop=0.,
drop_path=0., act_layer=nn.GELU, norm_layer=nn.LayerNorm):
super().__init__()
self.norm1 = norm_layer(dim)
self.attn = Attention(
dim, num_heads=num_heads, qkv_bias=qkv_bias, qk_scale=qk_scale, attn_drop=attn_drop, proj_drop=drop)
# NOTE: drop path for stochastic depth, we shall see if this is better than dropout here
self.drop_path = DropPath(drop_path) if drop_path > 0. else nn.Identity()
self.norm2 = norm_layer(dim)
mlp_hidden_dim = int(dim * mlp_ratio)
self.mlp = Mlp(in_features=dim, hidden_features=mlp_hidden_dim, act_layer=act_layer, drop=drop)
def forward(self, x):
x = x + self.drop_path(self.attn(self.norm1(x)))
x = x + self.drop_path(self.mlp(self.norm2(x)))
return x
class PatchEmbed(nn.Module):
""" Image to Patch Embedding
"""
def __init__(self, img_size=224, patch_size=16, in_chans=3, embed_dim=768):
super().__init__()
img_size = to_2tuple(img_size)
patch_size = to_2tuple(patch_size)
num_patches = (img_size[1] // patch_size[1]) * (img_size[0] // patch_size[0])
self.patch_hw = (img_size[1] // patch_size[1], img_size[0] // patch_size[0])
self.img_size = img_size
self.patch_size = patch_size
self.num_patches = num_patches
self.proj = nn.Conv2d(in_chans, embed_dim, kernel_size=patch_size, stride=patch_size)
def forward(self, x):
B, C, H, W = x.shape
# FIXME look at relaxing size constraints
# assert H == self.img_size[0] and W == self.img_size[1], \
# f"Input image size ({H}*{W}) doesn't match model ({self.img_size[0]}*{self.img_size[1]})."
x = self.proj(x).flatten(2).transpose(1, 2)
return x
class HybridEmbed(nn.Module):
""" CNN Feature Map Embedding
Extract feature map from CNN, flatten, project to embedding dim.
"""
def __init__(self, backbone, img_size=224, feature_size=None, in_chans=3, embed_dim=768):
super().__init__()
assert isinstance(backbone, nn.Module)
img_size = to_2tuple(img_size)
self.img_size = img_size
self.backbone = backbone
if feature_size is None:
with torch.no_grad():
# FIXME this is hacky, but most reliable way of determining the exact dim of the output feature
# map for all networks, the feature metadata has reliable channel and stride info, but using
# stride to calc feature dim requires info about padding of each stage that isn't captured.
training = backbone.training
if training:
backbone.eval()
o = self.backbone(torch.zeros(1, in_chans, img_size[0], img_size[1]))[-1]
feature_size = o.shape[-2:]
feature_dim = o.shape[1]
backbone.train(training)
else:
feature_size = to_2tuple(feature_size)
feature_dim = self.backbone.feature_info.channels()[-1]
self.num_patches = feature_size[0] * feature_size[1]
self.proj = nn.Linear(feature_dim, embed_dim)
def forward(self, x):
x = self.backbone(x)[-1]
x = x.flatten(2).transpose(1, 2)
x = self.proj(x)
return x
class TimmVisionTransformer(nn.Module):
""" Vision Transformer with support for patch or hybrid CNN input stage
"""
def __init__(self, img_size=224, patch_size=16, in_chans=3, num_classes=1000, embed_dim=768, depth=12,
num_heads=12, mlp_ratio=4., qkv_bias=False, qk_scale=None, drop_rate=0., attn_drop_rate=0.,
drop_path_rate=0., hybrid_backbone=None, norm_layer=nn.LayerNorm):
super().__init__()
self.num_classes = num_classes
self.num_features = self.embed_dim = embed_dim # num_features for consistency with other models
if hybrid_backbone is not None:
self.patch_embed = HybridEmbed(
hybrid_backbone, img_size=img_size, in_chans=in_chans, embed_dim=embed_dim)
else:
self.patch_embed = PatchEmbed(
img_size=img_size, patch_size=patch_size, in_chans=in_chans, embed_dim=embed_dim)
num_patches = self.patch_embed.num_patches
self.cls_token = nn.Parameter(torch.zeros(1, 1, embed_dim))
self.pos_embed = nn.Parameter(torch.zeros(1, num_patches + 1, embed_dim))
self.pos_drop = nn.Dropout(p=drop_rate)
dpr = [x.item() for x in torch.linspace(0, drop_path_rate, depth)] # stochastic depth decay rule
self.blocks = nn.ModuleList([
Block(
dim=embed_dim, num_heads=num_heads, mlp_ratio=mlp_ratio, qkv_bias=qkv_bias, qk_scale=qk_scale,
drop=drop_rate, attn_drop=attn_drop_rate, drop_path=dpr[i], norm_layer=norm_layer)
for i in range(depth)])
self.norm = norm_layer(embed_dim)
# NOTE as per official impl, we could have a pre-logits representation dense layer + tanh here
# self.repr = nn.Linear(embed_dim, representation_size)
# self.repr_act = nn.Tanh()
# Classifier head
self.head = nn.Linear(embed_dim, num_classes) if num_classes > 0 else nn.Identity()
trunc_normal_(self.pos_embed, std=.02)
trunc_normal_(self.cls_token, std=.02)
self.apply(self._init_weights)
def _init_weights(self, m):
if isinstance(m, nn.Linear):
trunc_normal_(m.weight, std=.02)
if isinstance(m, nn.Linear) and m.bias is not None:
nn.init.constant_(m.bias, 0)
elif isinstance(m, nn.LayerNorm):
nn.init.constant_(m.bias, 0)
nn.init.constant_(m.weight, 1.0)
@torch.jit.ignore
def no_weight_decay(self):
return {'pos_embed', 'cls_token'}
def get_classifier(self):
return self.head
def reset_classifier(self, num_classes, global_pool=''):
self.num_classes = num_classes
self.head = nn.Linear(self.embed_dim, num_classes) if num_classes > 0 else nn.Identity()
def forward_features(self, x):
B = x.shape[0]
x = self.patch_embed(x)
cls_tokens = self.cls_token.expand(B, -1, -1) # stole cls_tokens impl from Phil Wang, thanks
x = torch.cat((cls_tokens, x), dim=1)
x = x + self.pos_embed
x = self.pos_drop(x)
for blk in self.blocks:
x = blk(x)
x = self.norm(x)
return x[:, 0]
def forward(self, x):
x = self.forward_features(x)
x = self.head(x)
return x
class VisionTransformer(TimmVisionTransformer):
""" Vision Transformer with support for global average pooling
"""
def __init__(self, **kwargs):
super(VisionTransformer, self).__init__(**kwargs)
norm_layer = kwargs['norm_layer']
embed_dim = kwargs['embed_dim']
self.fc_norm = norm_layer(embed_dim)
del self.norm # remove the original norm
def interpolate_pos_encoding(self, x, embed):
new_patches = x.shape[1]
old_patches = embed.shape[1]
w = 8
h = int(new_patches / w)
if new_patches == old_patches:
return embed
dim = x.shape[-1]
pos_embed = nn.functional.interpolate(
embed.reshape(1, 64, 8, dim).permute(0, 3, 1, 2),
size=(h, w),
mode='bicubic',
)
pos_embed = pos_embed.permute(0, 2, 3, 1).view(1, -1, dim)
return pos_embed
def forward(self, x):
B = x.shape[0]
x = self.patch_embed(x)
x = x + self.interpolate_pos_encoding(x, self.pos_embed[:, 1:, :])
cls_token = self.cls_token + self.pos_embed[:, :1, :]
cls_tokens = cls_token.expand(B, -1, -1) # stole cls_tokens impl from Phil Wang, thanks
x = torch.cat((cls_tokens, x), dim=1)
x = self.pos_drop(x)
for blk in self.blocks:
x = blk(x)
# x = x[:, 1:, :].mean(dim=1) # global pool without cls token
# outcome = self.fc_norm(x)
return x[:, 1:, :].reshape(B, -1, 8, 768).permute(0, 3, 2, 1), x[:, 0]
class NewPatchEmbed(nn.Module):
""" Flexible Image to Patch Embedding
"""
def __init__(self, img_size=224, patch_size=16, in_chans=3, embed_dim=768, stride=10):
super().__init__()
img_size = to_2tuple(img_size)
patch_size = to_2tuple(patch_size)
stride = to_2tuple(stride)
self.img_size = img_size
self.patch_size = patch_size
self.proj = nn.Conv2d(in_chans, embed_dim, kernel_size=patch_size, stride=stride) # with overlapped patches
_, _, h, w = self.get_output_shape(img_size) # n, emb_dim, h, w
self.patch_hw = (h, w)
self.num_patches = h * w
def get_output_shape(self, img_size):
# todo: don't be lazy..
return self.proj(torch.randn(1, 1, img_size[0], img_size[1])).shape
def forward(self, x):
x = self.proj(x)
x = x.flatten(2).transpose(1, 2)
return x
def pca(image_feats_list, dim=3, fit_pca=None):
from sklearn.decomposition import PCA
device = image_feats_list[0].device
def flatten(tensor, target_size=None):
if target_size is not None and fit_pca is None:
F.interpolate(tensor, (target_size, target_size), mode="bilinear")
B, C, H, W = tensor.shape
return feats.permute(1, 0, 2, 3).reshape(C, B * H * W).permute(1, 0).detach().cpu()
if len(image_feats_list) > 1 and fit_pca is None:
target_size = image_feats_list[0].shape[2]
else:
target_size = None
flattened_feats = []
for feats in image_feats_list:
flattened_feats.append(flatten(feats, target_size))
x = torch.cat(flattened_feats, dim=0)
if fit_pca is None:
fit_pca = PCA(n_components=dim, svd_solver="arpack").fit(np.nan_to_num(x.detach().numpy()))
reduced_feats = []
for feats in image_feats_list:
x_red = torch.from_numpy(fit_pca.transform(flatten(feats)))
x_red -= x_red.min(dim=0, keepdim=True).values
x_red /= x_red.max(dim=0, keepdim=True).values
B, C, H, W = feats.shape
reduced_feats.append(x_red.reshape(B, H, W, dim).permute(0, 3, 1, 2).to(device))
return reduced_feats, fit_pca
class AudiosetDataset(Dataset):
def __init__(self, audio_conf):
self.audio_conf = audio_conf
self.melbins = self.audio_conf.get('num_mel_bins')
self.dataset = self.audio_conf.get('dataset')
self.norm_mean = self.audio_conf.get('mean')
self.norm_std = self.audio_conf.get('std')
print('Dataset: {}, mean {:.3f} and std {:.3f}'.format(self.dataset, self.norm_mean, self.norm_std))
print(f'size of dataset {self.__len__()}')
def _wav2fbank(self, filename):
sample_rate = 16000
target_length = 10
waveform, obs_sr = torchaudio.load(filename)
waveform = waveform[0]
if obs_sr != sample_rate:
waveform = resample(waveform, obs_sr, sample_rate)
original_length = waveform.shape[0]
padding = target_length * sample_rate - original_length
if padding > 0:
m = torch.nn.ZeroPad2d((0, padding))
waveform = m(waveform)
else:
waveform = waveform[:target_length * sample_rate]
waveform = waveform - waveform.mean()
# 498 128, 998, 128
fbank = torchaudio.compliance.kaldi.fbank(
waveform.unsqueeze(0),
htk_compat=True,
sample_frequency=sample_rate,
use_energy=False,
window_type='hanning',
num_mel_bins=128,
dither=0.0,
frame_shift=10)
normed_fbank = (fbank - self.norm_mean) / (self.norm_std * 2)
return normed_fbank
def __getitem__(self, index):
datum = {"wav": "../../samples/example.wav"}
fbank = self._wav2fbank(datum['wav'])
fbank = fbank.transpose(0, 1).unsqueeze(0) # 1, 128, 1024 (...,freq,time)
fbank = torch.transpose(fbank.squeeze(), 0, 1) # time, freq
# the output fbank shape is [time_frame_num, frequency_bins], e.g., [1024, 128]
return fbank.unsqueeze(0)
def __len__(self):
return 1
class AudioMAE(nn.Module):
def __init__(self, output_path, finetuned):
super().__init__()
# build model
model = VisionTransformer(
patch_size=16,
embed_dim=768,
depth=12,
num_heads=12,
mlp_ratio=4,
qkv_bias=True,
norm_layer=partial(nn.LayerNorm, eps=1e-6),
num_classes=527,
drop_path_rate=0.1)
img_size = (1024, 128) # 1024, 128
emb_dim = 768
model.patch_embed = NewPatchEmbed(
img_size=img_size, patch_size=(16, 16), in_chans=1, embed_dim=emb_dim, stride=16)
num_patches = model.patch_embed.num_patches
model.pos_embed = nn.Parameter(torch.zeros(1, num_patches + 1, emb_dim), requires_grad=False)
if finetuned:
fn = "audiomae_finetuned.pth"
else:
fn = "audiomae.pth"
checkpoint = torch.load(os.path.join(output_path, 'models', fn), map_location='cpu')
checkpoint_model = checkpoint['model']
state_dict = model.state_dict()
for k in ['head.weight', 'head.bias']:
if k in checkpoint_model and checkpoint_model[k].shape != state_dict[k].shape:
print(f"Removing key {k} from pretrained checkpoint")
del checkpoint_model[k]
msg = model.load_state_dict(checkpoint_model, strict=False)
print(msg)
model = model.eval()
self.model = model
self.config = dict(output_path=output_path, finetuned=finetuned)
def forward(self, audio, include_cls):
patch_tokens, cls_token = self.model(audio)
if include_cls:
return patch_tokens, cls_token
else:
return patch_tokens
if __name__ == '__main__':
import os
device = torch.device("cuda:2")
torch.manual_seed(0)
np.random.seed(0)
model = AudioMAE("../../", True).to(device)
audio_conf_val = {
'num_mel_bins': 128,
'target_length': 1024,
'dataset': "audioset",
'mode': 'val',
'mean': -4.2677393,
'std': 4.5689974,
}
dataset = AudiosetDataset(audio_conf=audio_conf_val)
batch = dataset[0].unsqueeze(0).to(device)
embeddings = model(batch, include_cls=False)
import matplotlib.pyplot as plt
with torch.no_grad():
[pca_feats], _ = pca([embeddings])
plt.imshow(pca_feats.cpu().squeeze(0).permute(1, 2, 0))
plt.show()
print("here")
print("here")