Spaces:
Running
Running
Upload 32 files
Browse files- DenseAV/denseav/aggregators.py +1 -1
- DenseAV/denseav/aligners.py +1 -1
- DenseAV/denseav/eval_utils.py +1 -1
- DenseAV/denseav/evaluate.py +2 -2
- DenseAV/denseav/plotting.py +1 -1
- DenseAV/denseav/shared.py +15 -15
- DenseAV/denseav/train.py +1222 -1222
DenseAV/denseav/aggregators.py
CHANGED
@@ -6,7 +6,7 @@ import torch.nn as nn
|
|
6 |
import torch.nn.functional as F
|
7 |
from tqdm import tqdm
|
8 |
|
9 |
-
from constants import *
|
10 |
|
11 |
|
12 |
@torch.jit.script
|
|
|
6 |
import torch.nn.functional as F
|
7 |
from tqdm import tqdm
|
8 |
|
9 |
+
from DenseAV.denseav.constants import *
|
10 |
|
11 |
|
12 |
@torch.jit.script
|
DenseAV/denseav/aligners.py
CHANGED
@@ -4,7 +4,7 @@ import torch
|
|
4 |
import torch.nn.functional as F
|
5 |
from torch.nn import ModuleList
|
6 |
|
7 |
-
from featurizers.DINO import Block
|
8 |
|
9 |
|
10 |
class ChannelNorm(torch.nn.Module):
|
|
|
4 |
import torch.nn.functional as F
|
5 |
from torch.nn import ModuleList
|
6 |
|
7 |
+
from DenseAV.denseav.featurizers.DINO import Block
|
8 |
|
9 |
|
10 |
class ChannelNorm(torch.nn.Module):
|
DenseAV/denseav/eval_utils.py
CHANGED
@@ -9,7 +9,7 @@ from torchmetrics.functional.classification import binary_average_precision
|
|
9 |
from tqdm import tqdm
|
10 |
|
11 |
from constants import *
|
12 |
-
from shared import unnorm, remove_axes
|
13 |
|
14 |
|
15 |
def prep_heatmap(sims, masks, h, w):
|
|
|
9 |
from tqdm import tqdm
|
10 |
|
11 |
from constants import *
|
12 |
+
from DenseAV.denseav.shared import unnorm, remove_axes
|
13 |
|
14 |
|
15 |
def prep_heatmap(sims, masks, h, w):
|
DenseAV/denseav/evaluate.py
CHANGED
@@ -4,8 +4,8 @@ from omegaconf import DictConfig, OmegaConf
|
|
4 |
from pytorch_lightning import Trainer
|
5 |
from pytorch_lightning import seed_everything
|
6 |
from pytorch_lightning.loggers import TensorBoardLogger
|
7 |
-
from data.AVDatasets import AVDataModule
|
8 |
-
from shared import load_trained_model
|
9 |
|
10 |
|
11 |
@hydra.main(config_path="configs", config_name="av_align.yaml")
|
|
|
4 |
from pytorch_lightning import Trainer
|
5 |
from pytorch_lightning import seed_everything
|
6 |
from pytorch_lightning.loggers import TensorBoardLogger
|
7 |
+
from DenseAV.denseav.data.AVDatasets import AVDataModule
|
8 |
+
from DenseAV.denseav.shared import load_trained_model
|
9 |
|
10 |
|
11 |
@hydra.main(config_path="configs", config_name="av_align.yaml")
|
DenseAV/denseav/plotting.py
CHANGED
@@ -10,7 +10,7 @@ import torch.nn.functional as F
|
|
10 |
import torchvision
|
11 |
from moviepy.editor import VideoFileClip, AudioFileClip
|
12 |
from base64 import b64encode
|
13 |
-
from shared import pca
|
14 |
|
15 |
|
16 |
def write_video_with_audio(video_frames, audio_array, video_fps, audio_fps, output_path):
|
|
|
10 |
import torchvision
|
11 |
from moviepy.editor import VideoFileClip, AudioFileClip
|
12 |
from base64 import b64encode
|
13 |
+
from DenseAV.denseav.shared import pca
|
14 |
|
15 |
|
16 |
def write_video_with_audio(video_frames, audio_array, video_fps, audio_fps, output_path):
|
DenseAV/denseav/shared.py
CHANGED
@@ -90,37 +90,37 @@ def get_image_featurizer(name, token_type="key", **kwargs):
|
|
90 |
name = name.lower()
|
91 |
|
92 |
if name == "vit":
|
93 |
-
from featurizers.DINO import DINOFeaturizer
|
94 |
patch_size = 16
|
95 |
model = DINOFeaturizer("vit_small_patch16_224", patch_size, token_type)
|
96 |
dim = 384
|
97 |
elif name == "dino16":
|
98 |
-
from featurizers.DINO import DINOFeaturizer
|
99 |
patch_size = 16
|
100 |
model = DINOFeaturizer("dino_vits16", patch_size, token_type)
|
101 |
dim = 384
|
102 |
elif name == "dino8":
|
103 |
-
from featurizers.DINO import DINOFeaturizer
|
104 |
patch_size = 8
|
105 |
model = DINOFeaturizer("dino_vits8", patch_size, token_type)
|
106 |
dim = 384
|
107 |
elif name == "clip":
|
108 |
-
from featurizers.CLIP import CLIPFeaturizer
|
109 |
patch_size = 16
|
110 |
model = CLIPFeaturizer()
|
111 |
dim = 512
|
112 |
elif name == "cavmae":
|
113 |
-
from featurizers.CAVMAE import CAVMAEImageFeaturizer
|
114 |
model = CAVMAEImageFeaturizer(kwargs["output_root"], model=kwargs.get("model"))
|
115 |
dim = 768
|
116 |
patch_size = 16
|
117 |
elif name == "fnac":
|
118 |
-
from featurizers.FNACAVL import FNACImageFeaturizer
|
119 |
model = FNACImageFeaturizer(kwargs["output_root"], model=kwargs.get("model"))
|
120 |
dim = 512
|
121 |
patch_size = 16
|
122 |
elif name == "imagebind":
|
123 |
-
from featurizers.ImageBind import ImageBindImageFeaturizer
|
124 |
model = ImageBindImageFeaturizer(kwargs["output_root"], model=kwargs.get("model"))
|
125 |
dim = 1024
|
126 |
patch_size = 16
|
@@ -131,12 +131,12 @@ def get_image_featurizer(name, token_type="key", **kwargs):
|
|
131 |
patch_size = 1
|
132 |
dim = 2048
|
133 |
elif name == "davenet":
|
134 |
-
from
|
135 |
model = DavenetImageFeaturizer()
|
136 |
patch_size = 1
|
137 |
dim = 1024
|
138 |
elif name == "dinov2":
|
139 |
-
from featurizers.DINOv2 import DINOv2Featurizer
|
140 |
model = DINOv2Featurizer()
|
141 |
patch_size = 14
|
142 |
dim = 768
|
@@ -147,29 +147,29 @@ def get_image_featurizer(name, token_type="key", **kwargs):
|
|
147 |
|
148 |
def get_audio_featurizer(name, **kwargs):
|
149 |
if name == "davenet":
|
150 |
-
from featurizers.DAVENet import DavenetAudioFeaturizer
|
151 |
model = DavenetAudioFeaturizer()
|
152 |
dim = 1024
|
153 |
elif name == "dino8":
|
154 |
model, _, dim = get_image_featurizer("dino8")
|
155 |
elif name == "hubert":
|
156 |
-
from featurizers.Hubert import Hubert
|
157 |
model = Hubert()
|
158 |
dim = 1024
|
159 |
elif name == "cavmae":
|
160 |
-
from featurizers.CAVMAE import CAVMAEAudioFeaturizer
|
161 |
model = CAVMAEAudioFeaturizer(kwargs["output_root"], model=kwargs.get("model"))
|
162 |
dim = 768
|
163 |
elif name == "imagebind":
|
164 |
-
from featurizers.ImageBind import ImageBindAudioFeaturizer
|
165 |
model = ImageBindAudioFeaturizer(kwargs["output_root"], model=kwargs.get("model"))
|
166 |
dim = 1024
|
167 |
elif name == "audiomae":
|
168 |
-
from featurizers.AudioMAE import AudioMAE
|
169 |
model = AudioMAE(kwargs["output_root"], False)
|
170 |
dim = 768
|
171 |
elif name == "audiomae-finetuned":
|
172 |
-
from featurizers.AudioMAE import AudioMAE
|
173 |
model = AudioMAE(kwargs["output_root"], True)
|
174 |
dim = 768
|
175 |
else:
|
|
|
90 |
name = name.lower()
|
91 |
|
92 |
if name == "vit":
|
93 |
+
from DenseAV.denseav.featurizers.DINO import DINOFeaturizer
|
94 |
patch_size = 16
|
95 |
model = DINOFeaturizer("vit_small_patch16_224", patch_size, token_type)
|
96 |
dim = 384
|
97 |
elif name == "dino16":
|
98 |
+
from DenseAV.denseav.featurizers.DINO import DINOFeaturizer
|
99 |
patch_size = 16
|
100 |
model = DINOFeaturizer("dino_vits16", patch_size, token_type)
|
101 |
dim = 384
|
102 |
elif name == "dino8":
|
103 |
+
from DenseAV.denseav.featurizers.DINO import DINOFeaturizer
|
104 |
patch_size = 8
|
105 |
model = DINOFeaturizer("dino_vits8", patch_size, token_type)
|
106 |
dim = 384
|
107 |
elif name == "clip":
|
108 |
+
from DenseAV.denseav.featurizers.CLIP import CLIPFeaturizer
|
109 |
patch_size = 16
|
110 |
model = CLIPFeaturizer()
|
111 |
dim = 512
|
112 |
elif name == "cavmae":
|
113 |
+
from DenseAV.denseav.featurizers.CAVMAE import CAVMAEImageFeaturizer
|
114 |
model = CAVMAEImageFeaturizer(kwargs["output_root"], model=kwargs.get("model"))
|
115 |
dim = 768
|
116 |
patch_size = 16
|
117 |
elif name == "fnac":
|
118 |
+
from DenseAV.denseav.featurizers.FNACAVL import FNACImageFeaturizer
|
119 |
model = FNACImageFeaturizer(kwargs["output_root"], model=kwargs.get("model"))
|
120 |
dim = 512
|
121 |
patch_size = 16
|
122 |
elif name == "imagebind":
|
123 |
+
from DenseAV.denseav.featurizers.ImageBind import ImageBindImageFeaturizer
|
124 |
model = ImageBindImageFeaturizer(kwargs["output_root"], model=kwargs.get("model"))
|
125 |
dim = 1024
|
126 |
patch_size = 16
|
|
|
131 |
patch_size = 1
|
132 |
dim = 2048
|
133 |
elif name == "davenet":
|
134 |
+
from fDenseAV.denseav.eaturizers.DAVENet import DavenetImageFeaturizer
|
135 |
model = DavenetImageFeaturizer()
|
136 |
patch_size = 1
|
137 |
dim = 1024
|
138 |
elif name == "dinov2":
|
139 |
+
from DenseAV.denseav.featurizers.DINOv2 import DINOv2Featurizer
|
140 |
model = DINOv2Featurizer()
|
141 |
patch_size = 14
|
142 |
dim = 768
|
|
|
147 |
|
148 |
def get_audio_featurizer(name, **kwargs):
|
149 |
if name == "davenet":
|
150 |
+
from DenseAV.denseav.featurizers.DAVENet import DavenetAudioFeaturizer
|
151 |
model = DavenetAudioFeaturizer()
|
152 |
dim = 1024
|
153 |
elif name == "dino8":
|
154 |
model, _, dim = get_image_featurizer("dino8")
|
155 |
elif name == "hubert":
|
156 |
+
from DenseAV.denseav.featurizers.Hubert import Hubert
|
157 |
model = Hubert()
|
158 |
dim = 1024
|
159 |
elif name == "cavmae":
|
160 |
+
from DenseAV.denseav.featurizers.CAVMAE import CAVMAEAudioFeaturizer
|
161 |
model = CAVMAEAudioFeaturizer(kwargs["output_root"], model=kwargs.get("model"))
|
162 |
dim = 768
|
163 |
elif name == "imagebind":
|
164 |
+
from DenseAV.denseav.featurizers.ImageBind import ImageBindAudioFeaturizer
|
165 |
model = ImageBindAudioFeaturizer(kwargs["output_root"], model=kwargs.get("model"))
|
166 |
dim = 1024
|
167 |
elif name == "audiomae":
|
168 |
+
from DenseAV.denseav.featurizers.AudioMAE import AudioMAE
|
169 |
model = AudioMAE(kwargs["output_root"], False)
|
170 |
dim = 768
|
171 |
elif name == "audiomae-finetuned":
|
172 |
+
from DenseAV.denseav.featurizers.AudioMAE import AudioMAE
|
173 |
model = AudioMAE(kwargs["output_root"], True)
|
174 |
dim = 768
|
175 |
else:
|
DenseAV/denseav/train.py
CHANGED
@@ -1,1222 +1,1222 @@
|
|
1 |
-
import os
|
2 |
-
from collections import deque
|
3 |
-
from itertools import combinations
|
4 |
-
from os.path import join
|
5 |
-
|
6 |
-
import hydra
|
7 |
-
import numpy as np
|
8 |
-
import pytorch_lightning as pl
|
9 |
-
import torch
|
10 |
-
import torch.distributed as dist
|
11 |
-
import torch.nn.functional as F
|
12 |
-
from omegaconf import DictConfig, OmegaConf
|
13 |
-
from peft import get_peft_model, LoraConfig
|
14 |
-
from pytorch_lightning import Trainer
|
15 |
-
from pytorch_lightning import seed_everything
|
16 |
-
from pytorch_lightning.callbacks import LearningRateMonitor, ModelCheckpoint
|
17 |
-
from pytorch_lightning.loggers import TensorBoardLogger
|
18 |
-
from pytorch_lightning.utilities import grad_norm
|
19 |
-
from torch.optim.lr_scheduler import CosineAnnealingWarmRestarts, SequentialLR, LambdaLR
|
20 |
-
from torchmetrics.functional.classification import binary_average_precision
|
21 |
-
|
22 |
-
from huggingface_hub import PyTorchModelHubMixin
|
23 |
-
|
24 |
-
from DenseAV.denseav.aggregators import get_aggregator
|
25 |
-
from aligners import get_aligner, ProgressiveGrowing
|
26 |
-
from constants import *
|
27 |
-
from data.AVDatasets import AVDataModule
|
28 |
-
from shared import flatten_preds, GatherLayer, \
|
29 |
-
get_image_featurizer, get_audio_featurizer, RollingAvg, create_model_from_cfg
|
30 |
-
|
31 |
-
torch.multiprocessing.set_sharing_strategy('file_system')
|
32 |
-
|
33 |
-
|
34 |
-
def _imposter_indices_helper(true_indices: torch.Tensor, samples: torch.Tensor):
|
35 |
-
mask = (true_indices == samples).to(torch.int64)
|
36 |
-
n = mask.shape[0]
|
37 |
-
|
38 |
-
if not mask.any():
|
39 |
-
return samples
|
40 |
-
else:
|
41 |
-
new_samples = torch.randint(0, n, size=(n,), device=true_indices.device)
|
42 |
-
comb_samples = mask * new_samples + (1 - mask) * samples
|
43 |
-
return _imposter_indices_helper(true_indices, comb_samples)
|
44 |
-
|
45 |
-
|
46 |
-
def imposter_indices(n, device):
|
47 |
-
return _imposter_indices_helper(
|
48 |
-
torch.arange(0, n, device=device),
|
49 |
-
torch.randint(0, n, size=(n,), device=device))
|
50 |
-
|
51 |
-
|
52 |
-
def get_sim_per_row(image_outputs, audio_outputs, n_frames, sim_type):
|
53 |
-
max_t = audio_outputs.shape[-1]
|
54 |
-
oh = F.one_hot(n_frames - 1, num_classes=max_t)
|
55 |
-
audio_mask = 1 - torch.cumsum(oh, dim=1)
|
56 |
-
audio_mask = F.pad(audio_mask, [1, 0], value=1)[:, :max_t].to(audio_outputs.dtype)
|
57 |
-
|
58 |
-
full_sim = torch.einsum("bct,bchw->bthw", audio_outputs, image_outputs)
|
59 |
-
expanded_am = audio_mask.unsqueeze(-1).unsqueeze(-1)
|
60 |
-
|
61 |
-
if sim_type.endswith("mi"):
|
62 |
-
offset = 10 * (full_sim.max() - full_sim.min())
|
63 |
-
full_sim = (full_sim - ((1 - expanded_am) * offset)).max(1, keepdim=True).values
|
64 |
-
|
65 |
-
if sim_type.startswith("mi"):
|
66 |
-
full_sim = full_sim.max(-1, keepdim=True).values.max(-2, keepdim=True).values
|
67 |
-
|
68 |
-
if sim_type.endswith("sa"):
|
69 |
-
full_sim = (full_sim * (expanded_am / expanded_am.sum(1, keepdim=True).clamp_min(1))).sum(1, keepdim=True)
|
70 |
-
|
71 |
-
return full_sim.mean(dim=[1, 2, 3])
|
72 |
-
|
73 |
-
|
74 |
-
def sampled_margin_rank_loss(image_outputs, audio_outputs, n_frames, sim_type, margin=1.):
|
75 |
-
"""
|
76 |
-
Computes the triplet margin ranking loss for each anchor image/caption pair
|
77 |
-
The impostor image/caption is randomly sampled from the minibatch
|
78 |
-
"""
|
79 |
-
assert (image_outputs.dim() == 4)
|
80 |
-
assert (audio_outputs.dim() == 3)
|
81 |
-
n = image_outputs.size(0)
|
82 |
-
imp_ind_i = imposter_indices(n, image_outputs.device)
|
83 |
-
imp_ind_a = imposter_indices(n, image_outputs.device)
|
84 |
-
true_sim = get_sim_per_row(image_outputs, audio_outputs, n_frames, sim_type)
|
85 |
-
imp_sim_i = get_sim_per_row(image_outputs[imp_ind_i], audio_outputs, n_frames, sim_type)
|
86 |
-
imp_sim_a = get_sim_per_row(image_outputs, audio_outputs[imp_ind_a], n_frames[imp_ind_a], sim_type)
|
87 |
-
a2i_loss = (margin + imp_sim_i - true_sim).clamp_min(0)
|
88 |
-
i2a_loss = (margin + imp_sim_a - true_sim).clamp_min(0)
|
89 |
-
return (a2i_loss + i2a_loss).mean() / 2
|
90 |
-
|
91 |
-
|
92 |
-
class SimilarityCalibrator(torch.nn.Module):
|
93 |
-
|
94 |
-
def __init__(self, cal_init, max_w=100, min_w=.01, subtract_mean=True, use_bias=False):
|
95 |
-
super().__init__()
|
96 |
-
self.max_w = max_w
|
97 |
-
self.min_w = min_w
|
98 |
-
self.w = torch.nn.Parameter(torch.tensor([cal_init]).log())
|
99 |
-
|
100 |
-
self.use_bias = use_bias
|
101 |
-
if self.use_bias:
|
102 |
-
self.b = torch.nn.Parameter(torch.tensor([0.0]))
|
103 |
-
|
104 |
-
self.subtract_mean = subtract_mean
|
105 |
-
|
106 |
-
def get_w(self):
|
107 |
-
return torch.exp(self.w).clamp_max(self.max_w).clamp_min(self.min_w)
|
108 |
-
|
109 |
-
def forward(self, x):
|
110 |
-
sims = self.get_w() * x
|
111 |
-
|
112 |
-
if self.use_bias:
|
113 |
-
sims = sims + self.b
|
114 |
-
|
115 |
-
if self.subtract_mean:
|
116 |
-
return sims - sims.mean()
|
117 |
-
else:
|
118 |
-
return sims
|
119 |
-
|
120 |
-
|
121 |
-
class SpatialDropout(torch.nn.Module):
|
122 |
-
|
123 |
-
def __init__(self, p, *args, **kwargs):
|
124 |
-
super().__init__(*args, **kwargs)
|
125 |
-
self.p = p
|
126 |
-
|
127 |
-
def forward(self, x):
|
128 |
-
b, c, h, w = x.shape
|
129 |
-
dropout = torch.rand((b, 1, h, w), dtype=x.dtype, device=x.device) > self.p
|
130 |
-
|
131 |
-
if self.training:
|
132 |
-
return x * dropout
|
133 |
-
else:
|
134 |
-
return x
|
135 |
-
|
136 |
-
|
137 |
-
class LitAVAligner(pl.LightningModule, PyTorchModelHubMixin, repo_url="https://github.com/mhamilton723/DenseAV", license="mit", tags=["denseav"]):
|
138 |
-
def __init__(self,
|
139 |
-
code_dim,
|
140 |
-
image_model_type,
|
141 |
-
image_model_token_type,
|
142 |
-
image_aligner_type,
|
143 |
-
image_pool_width,
|
144 |
-
audio_model_type,
|
145 |
-
audio_aligner_type,
|
146 |
-
audio_pool_width,
|
147 |
-
audio_lora,
|
148 |
-
audio_lora_rank,
|
149 |
-
image_lora,
|
150 |
-
image_lora_rank,
|
151 |
-
gradient_clipping,
|
152 |
-
learn_audio_cls,
|
153 |
-
silence_l1,
|
154 |
-
silence_l2,
|
155 |
-
tv_weight,
|
156 |
-
nonneg_sim,
|
157 |
-
nonneg_pressure,
|
158 |
-
pretrain_lr,
|
159 |
-
lr,
|
160 |
-
lr_warmup,
|
161 |
-
lr_schedule,
|
162 |
-
lr_cycle_length,
|
163 |
-
optimizer,
|
164 |
-
gather_tensors,
|
165 |
-
sim_agg_type,
|
166 |
-
sim_agg_heads,
|
167 |
-
sim_use_cls,
|
168 |
-
disentangle_weight,
|
169 |
-
norm_vectors,
|
170 |
-
cal_init,
|
171 |
-
cal_balance_weight,
|
172 |
-
loss_type,
|
173 |
-
loss_margin,
|
174 |
-
mask_silence,
|
175 |
-
finetune_image_model,
|
176 |
-
finetune_audio_model,
|
177 |
-
use_cached_embs,
|
178 |
-
output_root,
|
179 |
-
neg_audio,
|
180 |
-
neg_audio_weight,
|
181 |
-
head_agg,
|
182 |
-
adaptive_clipping,
|
183 |
-
specialization_weight,
|
184 |
-
spatial_dropout,
|
185 |
-
channel_dropout,
|
186 |
-
mixup_weight,
|
187 |
-
memory_buffer_size,
|
188 |
-
loss_leak,
|
189 |
-
):
|
190 |
-
super().__init__()
|
191 |
-
|
192 |
-
self.code_dim = code_dim
|
193 |
-
self.image_model_type = image_model_type
|
194 |
-
self.image_model_token_type = image_model_token_type
|
195 |
-
self.image_aligner_type = image_aligner_type
|
196 |
-
self.image_pool_width = image_pool_width
|
197 |
-
self.audio_model_type = audio_model_type
|
198 |
-
self.audio_aligner_type = audio_aligner_type
|
199 |
-
self.audio_pool_width = audio_pool_width
|
200 |
-
|
201 |
-
self.gradient_clipping = gradient_clipping
|
202 |
-
self.learn_audio_cls = learn_audio_cls
|
203 |
-
self.silence_l1 = silence_l1
|
204 |
-
self.silence_l2 = silence_l2
|
205 |
-
|
206 |
-
self.tv_weight = tv_weight
|
207 |
-
self.nonneg_sim = nonneg_sim
|
208 |
-
self.nonneg_pressure = nonneg_pressure
|
209 |
-
self.pretrain_lr = pretrain_lr
|
210 |
-
self.lr = lr
|
211 |
-
self.lr_warmup = lr_warmup
|
212 |
-
self.lr_schedule = lr_schedule
|
213 |
-
self.lr_cycle_length = lr_cycle_length
|
214 |
-
self.optimizer = optimizer
|
215 |
-
self.gather_tensors = gather_tensors
|
216 |
-
self.sim_agg_type = sim_agg_type
|
217 |
-
self.sim_agg_heads = sim_agg_heads
|
218 |
-
self.sim_use_cls = sim_use_cls
|
219 |
-
self.disentangle_weight = disentangle_weight
|
220 |
-
|
221 |
-
self.norm_vectors = norm_vectors
|
222 |
-
self.cal_init = cal_init
|
223 |
-
self.cal_balance_weight = cal_balance_weight
|
224 |
-
self.loss_type = loss_type
|
225 |
-
self.loss_margin = loss_margin
|
226 |
-
self.mask_silence = mask_silence
|
227 |
-
self.finetune_image_model = finetune_image_model
|
228 |
-
self.finetune_audio_model = finetune_audio_model
|
229 |
-
self.use_cached_embs = use_cached_embs
|
230 |
-
self.output_root = output_root
|
231 |
-
self.audio_lora = audio_lora
|
232 |
-
self.audio_lora_rank = audio_lora_rank
|
233 |
-
self.image_lora = image_lora
|
234 |
-
self.image_lora_rank = image_lora_rank
|
235 |
-
self.neg_audio = neg_audio
|
236 |
-
self.neg_audio_weight = neg_audio_weight
|
237 |
-
self.head_agg = head_agg
|
238 |
-
|
239 |
-
self.adaptive_clipping = adaptive_clipping
|
240 |
-
self.specialization_weight = specialization_weight
|
241 |
-
self.spatial_dropout = spatial_dropout
|
242 |
-
self.channel_dropout = channel_dropout
|
243 |
-
self.mixup_weight = mixup_weight
|
244 |
-
|
245 |
-
self.memory_buffer_size = memory_buffer_size
|
246 |
-
self.memory_buffer = deque(maxlen=self.memory_buffer_size)
|
247 |
-
self.loss_leak = loss_leak
|
248 |
-
|
249 |
-
self.full_train = False # Added by me
|
250 |
-
|
251 |
-
if self.audio_model_type in {"audiomae", "audiomae-finetuned", "cavmae", "cavmae-mixed", "imagebind"}:
|
252 |
-
self.audio_input = "spec"
|
253 |
-
elif self.audio_model_type == "davenet":
|
254 |
-
self.audio_input = "davenet_spec"
|
255 |
-
elif self.audio_model_type == "fnac":
|
256 |
-
self.audio_input = "fnac_spec"
|
257 |
-
else:
|
258 |
-
self.audio_input = "audio"
|
259 |
-
|
260 |
-
extra_model_args = dict(output_root=output_root)
|
261 |
-
|
262 |
-
self.image_model, _, self.image_feat_dim = get_image_featurizer(
|
263 |
-
image_model_type, token_type=self.image_model_token_type, **extra_model_args)
|
264 |
-
|
265 |
-
self.image_model.eval()
|
266 |
-
if not self.finetune_image_model:
|
267 |
-
for param in self.image_model.parameters():
|
268 |
-
param.requires_grad = False
|
269 |
-
|
270 |
-
if image_model_type in {"cavmae", "cavmae-mixed", "imagebind", "fnac"}:
|
271 |
-
extra_model_args["model"] = self.image_model.model
|
272 |
-
|
273 |
-
if use_cached_embs:
|
274 |
-
_, self.audio_feat_dim = get_audio_featurizer(audio_model_type, **extra_model_args)
|
275 |
-
else:
|
276 |
-
self.audio_model, self.audio_feat_dim = get_audio_featurizer(audio_model_type, **extra_model_args)
|
277 |
-
|
278 |
-
self.audio_model.eval()
|
279 |
-
if not self.finetune_audio_model:
|
280 |
-
for param in self.audio_model.parameters():
|
281 |
-
param.requires_grad = False
|
282 |
-
|
283 |
-
if self.image_lora:
|
284 |
-
if self.image_model_type in {"sam", "dino8", "dinov2", "cavmae", "cavmae-mixed"}:
|
285 |
-
target_modules = ["qkv"]
|
286 |
-
elif self.image_model_type == "clip":
|
287 |
-
target_modules = ["out_proj"]
|
288 |
-
elif self.image_model_type == "imagebind":
|
289 |
-
target_modules = ["out_proj", "fc1", "fc2"]
|
290 |
-
else:
|
291 |
-
target_modules = ["q", "k", "v"]
|
292 |
-
|
293 |
-
peft_config = LoraConfig(
|
294 |
-
target_modules=target_modules,
|
295 |
-
inference_mode=False,
|
296 |
-
r=image_lora_rank,
|
297 |
-
lora_alpha=32,
|
298 |
-
lora_dropout=0.1
|
299 |
-
)
|
300 |
-
self.image_model = get_peft_model(self.image_model, peft_config)
|
301 |
-
self.image_model.print_trainable_parameters()
|
302 |
-
|
303 |
-
if self.audio_lora:
|
304 |
-
if self.audio_model_type == "hubert":
|
305 |
-
target_modules = ["q_proj", "k_proj", "v_proj"]
|
306 |
-
else:
|
307 |
-
target_modules = ["q", "k", "v"]
|
308 |
-
|
309 |
-
peft_config = LoraConfig(
|
310 |
-
inference_mode=False,
|
311 |
-
target_modules=target_modules,
|
312 |
-
r=audio_lora_rank,
|
313 |
-
lora_alpha=32,
|
314 |
-
lora_dropout=0.1
|
315 |
-
)
|
316 |
-
self.audio_model = get_peft_model(self.audio_model, peft_config)
|
317 |
-
self.audio_model.print_trainable_parameters()
|
318 |
-
|
319 |
-
shared_aligner_args = dict(out_dim=self.code_dim)
|
320 |
-
|
321 |
-
self.audio_aligner = get_aligner(
|
322 |
-
self.audio_aligner_type, self.audio_feat_dim, **shared_aligner_args)
|
323 |
-
self.image_aligner = get_aligner(
|
324 |
-
self.image_aligner_type, self.image_feat_dim, **shared_aligner_args)
|
325 |
-
|
326 |
-
if self.loss_type == "nce":
|
327 |
-
self.sim_cal = SimilarityCalibrator(self.cal_init, subtract_mean=True, use_bias=False)
|
328 |
-
else:
|
329 |
-
self.sim_cal = SimilarityCalibrator(self.cal_init, subtract_mean=False, use_bias=True)
|
330 |
-
|
331 |
-
if self.learn_audio_cls:
|
332 |
-
self.audio_cls = torch.nn.Parameter(torch.randn(self.audio_feat_dim))
|
333 |
-
|
334 |
-
if self.spatial_dropout > 0.0:
|
335 |
-
self.spatial_dropout_layer = SpatialDropout(self.spatial_dropout)
|
336 |
-
|
337 |
-
if self.channel_dropout > 0.0:
|
338 |
-
self.channel_dropout_layer = torch.nn.Dropout2d(self.channel_dropout)
|
339 |
-
|
340 |
-
self.sim_agg = get_aggregator(
|
341 |
-
self.sim_agg_type,
|
342 |
-
self.nonneg_sim,
|
343 |
-
self.mask_silence,
|
344 |
-
self.sim_agg_heads,
|
345 |
-
self.head_agg,
|
346 |
-
self.sim_use_cls,
|
347 |
-
dim=self.image_feat_dim
|
348 |
-
)
|
349 |
-
|
350 |
-
self.hparams_logged = False
|
351 |
-
self.rolling_avg = RollingAvg(50)
|
352 |
-
self.grad_avg = RollingAvg(50, nonzero=True)
|
353 |
-
|
354 |
-
self.save_hyperparameters()
|
355 |
-
|
356 |
-
def set_full_train(self, full_train):
|
357 |
-
self.full_train = full_train
|
358 |
-
|
359 |
-
def prep_feats(self, feats, is_audio):
|
360 |
-
|
361 |
-
if not is_audio and self.training and self.image_pool_width > 1:
|
362 |
-
feats = torch.nn.AvgPool2d(self.image_pool_width)(feats)
|
363 |
-
|
364 |
-
if is_audio and self.training and self.audio_pool_width > 1:
|
365 |
-
feats = torch.nn.AvgPool2d((1, self.audio_pool_width))(feats)
|
366 |
-
|
367 |
-
if self.norm_vectors:
|
368 |
-
feats = F.normalize(feats, dim=1)
|
369 |
-
|
370 |
-
return feats
|
371 |
-
|
372 |
-
def on_before_optimizer_step(self, optimizer, optimizer_idx):
|
373 |
-
norms = grad_norm(self, norm_type=2)
|
374 |
-
avg_grads = self.grad_avg.get_all()
|
375 |
-
params = {
|
376 |
-
f"grad_2.0_norm/{name}": p
|
377 |
-
for name, p in self.named_parameters()
|
378 |
-
if p.grad is not None
|
379 |
-
}
|
380 |
-
|
381 |
-
if self.adaptive_clipping:
|
382 |
-
for k in norms.keys():
|
383 |
-
if k in params:
|
384 |
-
avg_grad = max(avg_grads.get(k, norms[k]), 1e-5)
|
385 |
-
if self.global_step > 10 and norms[k] > avg_grad * 5:
|
386 |
-
print(f"Bad grad for {k}: {norms[k]} scaling to {avg_grad * 5}")
|
387 |
-
torch.nn.utils.clip_grad_norm_(params[k], avg_grad * 5)
|
388 |
-
norms[k] = avg_grad * 5
|
389 |
-
|
390 |
-
if norms[k] > self.gradient_clipping:
|
391 |
-
# print(f"Bad grad for {k}: {norms[k]} scaling to {self.gradient_clipping}")
|
392 |
-
torch.nn.utils.clip_grad_norm_(params[k], self.gradient_clipping)
|
393 |
-
|
394 |
-
# self.grad_avg.add_all(norms)
|
395 |
-
# self.log_dict(norms)
|
396 |
-
|
397 |
-
def interpolate_mask(self, mask, target_length, discrete):
|
398 |
-
b, t = mask.shape
|
399 |
-
|
400 |
-
mask = F.interpolate(mask.reshape(b, 1, 1, t), (1, target_length), mode="bilinear") \
|
401 |
-
.reshape(b, target_length)
|
402 |
-
|
403 |
-
if discrete:
|
404 |
-
mask = mask > 0.01
|
405 |
-
sums = mask.sum(1)
|
406 |
-
all_zeros = torch.where(sums == 0)[0]
|
407 |
-
if len(all_zeros) > 0:
|
408 |
-
print("Fixing a bad mask")
|
409 |
-
for entry in all_zeros:
|
410 |
-
mask[entry, torch.randint(0, target_length - 1, size=())] = True
|
411 |
-
else:
|
412 |
-
return mask
|
413 |
-
return mask
|
414 |
-
|
415 |
-
def forward_audio(self, batch):
|
416 |
-
if self.use_cached_embs:
|
417 |
-
audio_feats = batch["audio_emb"]
|
418 |
-
if "audio_cls" in batch:
|
419 |
-
audio_cls = batch["audio_cls"]
|
420 |
-
else:
|
421 |
-
audio_cls = None
|
422 |
-
else:
|
423 |
-
audio = batch[self.audio_input]
|
424 |
-
|
425 |
-
if self.full_train:
|
426 |
-
audio_feats, audio_cls = self.audio_model(audio, include_cls=True)
|
427 |
-
else:
|
428 |
-
with torch.no_grad():
|
429 |
-
audio_feats, audio_cls = self.audio_model(audio, include_cls=True)
|
430 |
-
|
431 |
-
mask = batch[AUDIO_MASK] if AUDIO_MASK in batch else torch.ones_like(audio)
|
432 |
-
pos_mask = batch[AUDIO_POS_MASK] if AUDIO_POS_MASK in batch else torch.ones_like(audio)
|
433 |
-
|
434 |
-
if self.learn_audio_cls:
|
435 |
-
assert audio_cls is None
|
436 |
-
audio_cls = torch.broadcast_to(self.audio_cls.unsqueeze(0), (audio_feats.shape[0], audio_feats.shape[1]))
|
437 |
-
|
438 |
-
aligned_audio_feats, aligned_audio_cls = self.audio_aligner(audio_feats, audio_cls)
|
439 |
-
|
440 |
-
if self.channel_dropout > 0.0:
|
441 |
-
aligned_audio_feats = self.channel_dropout_layer(aligned_audio_feats)
|
442 |
-
|
443 |
-
aligned_audio_feats = self.prep_feats(aligned_audio_feats, is_audio=True)
|
444 |
-
audio_mask = self.interpolate_mask(mask, aligned_audio_feats.shape[-1], True)
|
445 |
-
audio_pos_mask = self.interpolate_mask(pos_mask, aligned_audio_feats.shape[-1], False)
|
446 |
-
|
447 |
-
ret = {
|
448 |
-
AUDIO_MASK: audio_mask,
|
449 |
-
AUDIO_POS_MASK: audio_pos_mask,
|
450 |
-
AUDIO_FEATS: aligned_audio_feats,
|
451 |
-
}
|
452 |
-
|
453 |
-
if aligned_audio_cls is not None:
|
454 |
-
ret[AUDIO_CLS] = aligned_audio_cls
|
455 |
-
|
456 |
-
return ret
|
457 |
-
|
458 |
-
# @autocast(device_type="cuda", enabled=False)
|
459 |
-
def forward_image(self, batch, max_batch_size=None):
|
460 |
-
|
461 |
-
with torch.no_grad():
|
462 |
-
image = batch[IMAGE_INPUT]
|
463 |
-
b, nf, c, h, w = image.shape
|
464 |
-
image = image.reshape(b * nf, c, h, w)
|
465 |
-
|
466 |
-
if max_batch_size is None:
|
467 |
-
max_batch_size = image.shape[0]
|
468 |
-
|
469 |
-
chunks = [image[i:i + max_batch_size] for i in range(0, image.shape[0], max_batch_size)]
|
470 |
-
|
471 |
-
all_image_feats = []
|
472 |
-
all_image_cls = []
|
473 |
-
|
474 |
-
for chunk in chunks:
|
475 |
-
if self.full_train:
|
476 |
-
image_feats, image_cls = self.image_model(chunk, include_cls=True)
|
477 |
-
else:
|
478 |
-
with torch.no_grad():
|
479 |
-
image_feats, image_cls = self.image_model(chunk, include_cls=True)
|
480 |
-
|
481 |
-
aligned_image_feats, aligned_image_cls = self.image_aligner(image_feats, image_cls)
|
482 |
-
|
483 |
-
all_image_feats.append(aligned_image_feats)
|
484 |
-
all_image_cls.append(aligned_image_cls)
|
485 |
-
|
486 |
-
# Stitch the chunks back together
|
487 |
-
aligned_image_feats = torch.cat(all_image_feats, dim=0)
|
488 |
-
aligned_image_cls = torch.cat(all_image_cls, dim=0)
|
489 |
-
|
490 |
-
if self.channel_dropout > 0.0:
|
491 |
-
aligned_image_feats = self.channel_dropout_layer(aligned_image_feats)
|
492 |
-
|
493 |
-
if self.spatial_dropout > 0.0:
|
494 |
-
aligned_image_feats = self.spatial_dropout_layer(aligned_image_feats)
|
495 |
-
|
496 |
-
aligned_image_feats = self.prep_feats(aligned_image_feats, is_audio=False)
|
497 |
-
ret = {IMAGE_FEATS: aligned_image_feats}
|
498 |
-
|
499 |
-
if IMAGE_MASK in batch:
|
500 |
-
with torch.no_grad():
|
501 |
-
mask = batch[IMAGE_MASK]
|
502 |
-
mask = mask.reshape(b * nf, 1, h, w)
|
503 |
-
b, c, h, w = aligned_image_feats.shape
|
504 |
-
mask = F.adaptive_avg_pool2d(mask.to(aligned_image_feats), output_size=(h, w))
|
505 |
-
ret[IMAGE_MASK] = mask
|
506 |
-
|
507 |
-
if aligned_image_cls is not None:
|
508 |
-
ret[IMAGE_CLS] = aligned_image_cls
|
509 |
-
|
510 |
-
return ret
|
511 |
-
|
512 |
-
def forward(self, batch):
|
513 |
-
audio_feat_dict = self.forward_audio(batch)
|
514 |
-
image_feat_dict = self.forward_image(batch)
|
515 |
-
return {**image_feat_dict, **audio_feat_dict}
|
516 |
-
|
517 |
-
def contrast_loss(self, sims):
|
518 |
-
b = sims.shape[0]
|
519 |
-
sims = sims - torch.eye(b, b, device=sims.device) * self.loss_margin
|
520 |
-
sims_1 = sims
|
521 |
-
sims_2 = sims.permute(1, 0)
|
522 |
-
|
523 |
-
if self.loss_leak > 0.0:
|
524 |
-
id = torch.eye(sims_1.shape[0], sims_1.shape[1], device=sims.device, dtype=sims.dtype)
|
525 |
-
label_mask = id * (1 - self.loss_leak)
|
526 |
-
label_mask += (1 - id) * self.loss_leak / (sims_1.shape[0] - 1)
|
527 |
-
label_mask /= label_mask.sum(dim=1, keepdim=True)
|
528 |
-
else:
|
529 |
-
label_mask = torch.eye(sims_1.shape[0], sims_1.shape[1], device=sims.device, dtype=sims.dtype)
|
530 |
-
|
531 |
-
labels = torch.arange(0, sims.shape[0], device=sims.device)
|
532 |
-
self.rolling_avg.add(f"acc/1", (sims.argmax(dim=1) == labels).to(sims).mean())
|
533 |
-
self.rolling_avg.add(f"acc/2", (sims.argmax(dim=0) == labels).to(sims).mean())
|
534 |
-
|
535 |
-
if self.loss_type == "margin":
|
536 |
-
margin_loss_tensor = (sims - torch.diag(sims)).clamp_min(0)
|
537 |
-
margin_loss = margin_loss_tensor.mean()
|
538 |
-
self.rolling_avg.add(f"loss/frac_nonzero", (margin_loss_tensor > 0).to(sims).mean())
|
539 |
-
self.rolling_avg.add(f"loss/margin", margin_loss)
|
540 |
-
return margin_loss
|
541 |
-
elif self.loss_type == "ce":
|
542 |
-
ce_loss = 1 / 2 * F.cross_entropy(sims_1, labels) + \
|
543 |
-
1 / 2 * F.cross_entropy(sims_2, labels)
|
544 |
-
self.rolling_avg.add(f"loss/ce", ce_loss)
|
545 |
-
return ce_loss
|
546 |
-
elif self.loss_type == "bce":
|
547 |
-
bce_loss = F.binary_cross_entropy_with_logits(sims_1.flatten(), label_mask.flatten())
|
548 |
-
self.rolling_avg.add(f"loss/bce", bce_loss)
|
549 |
-
return bce_loss
|
550 |
-
elif self.loss_type == "nce":
|
551 |
-
nce_loss = 1 / 2 * (-F.log_softmax(sims_1, dim=-1) * label_mask).sum(1).mean() + \
|
552 |
-
1 / 2 * (-F.log_softmax(sims_2, dim=-1) * label_mask).sum(1).mean()
|
553 |
-
self.rolling_avg.add(f"loss/nce", nce_loss)
|
554 |
-
return nce_loss
|
555 |
-
else:
|
556 |
-
raise ValueError(f"Unknown loss type {self.loss_type}")
|
557 |
-
|
558 |
-
def loss(self, preds):
|
559 |
-
image_feats = preds[IMAGE_FEATS]
|
560 |
-
audio_feats = preds[AUDIO_FEATS]
|
561 |
-
audio_mask = preds[AUDIO_MASK]
|
562 |
-
image_mask = preds[IMAGE_MASK]
|
563 |
-
audio_pos_mask = preds[AUDIO_POS_MASK]
|
564 |
-
if DATA_SOURCE in preds:
|
565 |
-
source = preds[DATA_SOURCE].to(torch.int64)
|
566 |
-
else:
|
567 |
-
source = None
|
568 |
-
|
569 |
-
uncal_sims = self.sim_agg(preds, agg_heads=True)
|
570 |
-
sims = self.sim_cal(uncal_sims)
|
571 |
-
|
572 |
-
_mask = 1 - torch.eye(sims.shape[0], device=sims.device)
|
573 |
-
self.log(f"sim/pos", torch.diag(sims).mean())
|
574 |
-
self.log(f"sim/neg", (sims * _mask).sum() / (_mask.sum()))
|
575 |
-
self.log(f"sim/uncal_pos", torch.diag(uncal_sims).mean())
|
576 |
-
self.log(f"sim/uncal_neg", (uncal_sims * _mask).sum() / (_mask.sum()))
|
577 |
-
|
578 |
-
b, c, h, w = image_feats.shape
|
579 |
-
b, c, f, t = audio_feats.shape
|
580 |
-
n_samples = 250
|
581 |
-
|
582 |
-
nh = self.sim_agg_heads
|
583 |
-
image_feats_by_head = image_feats.reshape(b, self.sim_agg_heads, c // nh, h, w)
|
584 |
-
audio_feats_by_head = audio_feats.reshape(b, self.sim_agg_heads, c // nh, f, t)
|
585 |
-
|
586 |
-
def maybe_clamp(t):
|
587 |
-
return t.clamp_min(0) if self.nonneg_sim else t
|
588 |
-
|
589 |
-
paired_sim_raw = self.sim_agg.get_pairwise_sims(preds, raw=True, agg_sim=False, agg_heads=False)
|
590 |
-
paired_sim = maybe_clamp(paired_sim_raw)
|
591 |
-
|
592 |
-
loss = 0.0
|
593 |
-
|
594 |
-
if self.nonneg_pressure:
|
595 |
-
afb, afk, afc, aff, aft = audio_feats_by_head.shape
|
596 |
-
ifb, ifk, ifc, ifh, ifw = image_feats_by_head.shape
|
597 |
-
assert (afb == ifb)
|
598 |
-
|
599 |
-
device = audio_feats_by_head.device
|
600 |
-
random_b = torch.randint(0, afb, size=(n_samples,), device=device)
|
601 |
-
random_t = torch.randint(0, aft, size=(n_samples,), device=device)
|
602 |
-
random_f = torch.randint(0, aff, size=(n_samples,), device=device)
|
603 |
-
random_h = torch.randint(0, ifh, size=(n_samples,), device=device)
|
604 |
-
random_w = torch.randint(0, ifw, size=(n_samples,), device=device)
|
605 |
-
|
606 |
-
random_audio_feats = audio_feats_by_head[random_b, :, :, random_f, random_t]
|
607 |
-
random_image_feats = image_feats_by_head[random_b, :, :, random_h, random_w]
|
608 |
-
random_sim_raw = torch.einsum("bkc,dkc->bdk", random_audio_feats, random_image_feats)
|
609 |
-
|
610 |
-
nonneg_loss = random_sim_raw.clamp_max(0).square().mean()
|
611 |
-
self.rolling_avg.add(f"loss/nonneg", nonneg_loss)
|
612 |
-
loss += nonneg_loss * self.nonneg_pressure
|
613 |
-
|
614 |
-
if self.silence_l1 > 0 or self.silence_l2 > 0:
|
615 |
-
masked_b, masked_t = torch.where(~audio_mask)
|
616 |
-
if len(masked_b) > n_samples:
|
617 |
-
subset = torch.randperm(len(masked_b))[:n_samples]
|
618 |
-
masked_b = masked_b[subset]
|
619 |
-
masked_t = masked_t[subset]
|
620 |
-
|
621 |
-
if len(masked_b) == n_samples:
|
622 |
-
silent_audio_feats = audio_feats_by_head[masked_b, :, :, :, masked_t].mean(-1) # d k c
|
623 |
-
silence_tensor = maybe_clamp(
|
624 |
-
torch.einsum("bkchw,dkc->bkdhw", image_feats_by_head, silent_audio_feats))
|
625 |
-
|
626 |
-
silence_l1_loss = silence_tensor.abs().mean()
|
627 |
-
self.rolling_avg.add(f"loss/silence_l1", silence_l1_loss)
|
628 |
-
loss += silence_l1_loss * self.silence_l1
|
629 |
-
|
630 |
-
silence_l2_loss = silence_tensor.square().mean()
|
631 |
-
self.rolling_avg.add(f"loss/silence_l2", silence_l2_loss)
|
632 |
-
loss += silence_l2_loss * self.silence_l2
|
633 |
-
else:
|
634 |
-
pass
|
635 |
-
|
636 |
-
if self.neg_audio_weight > 0 and self.neg_audio:
|
637 |
-
b, t = audio_pos_mask.shape
|
638 |
-
negative_weight = ((1 - audio_pos_mask) * audio_mask.to(sims)).reshape(b, 1, 1, 1, 1, t)
|
639 |
-
negative_weight = torch.broadcast_to(negative_weight, paired_sim.shape)
|
640 |
-
if negative_weight.sum() > 0:
|
641 |
-
neg_audio_loss = (paired_sim.square() * negative_weight).sum() \
|
642 |
-
/ negative_weight.sum().clamp_min(0.1)
|
643 |
-
self.rolling_avg.add(f"loss/neg_audio", neg_audio_loss)
|
644 |
-
self.rolling_avg.add(f"loss/neg_weight_avg", negative_weight.mean())
|
645 |
-
loss += neg_audio_loss * self.neg_audio_weight
|
646 |
-
else:
|
647 |
-
print("WARNING: No negative samples found in batch")
|
648 |
-
|
649 |
-
if self.tv_weight > 0:
|
650 |
-
tv_loss = (paired_sim[:, :, :, :, :, 1:] - paired_sim[:, :, :, :, :, :-1]).square().mean()
|
651 |
-
self.rolling_avg.add(f"loss/tv", tv_loss)
|
652 |
-
loss += tv_loss * self.tv_weight
|
653 |
-
|
654 |
-
self.log(f"cal/w", self.sim_cal.get_w())
|
655 |
-
if self.cal_balance_weight > 0.0:
|
656 |
-
cal_balance = (np.log(self.cal_init) - torch.log(self.sim_cal.get_w().clamp_min(.00000001))) \
|
657 |
-
.clamp_min(0).square().mean()
|
658 |
-
self.rolling_avg.add(f"loss/cal_balance", cal_balance)
|
659 |
-
loss += cal_balance * self.cal_balance_weight
|
660 |
-
|
661 |
-
if self.disentangle_weight > 0.0:
|
662 |
-
assert source is not None
|
663 |
-
assert self.sim_agg_heads % 2 == 0
|
664 |
-
|
665 |
-
dilation = self.sim_agg_heads // 2
|
666 |
-
sources_oh = F.one_hot(source, num_classes=2)
|
667 |
-
b, h = sources_oh.shape
|
668 |
-
sources_mask = 1 - torch.broadcast_to(sources_oh.unsqueeze(-1), (b, h, dilation)) \
|
669 |
-
.reshape(b, h * dilation).to(paired_sim)
|
670 |
-
disentangle_loss = torch.einsum("bkhwft,bk->bhwft", paired_sim, sources_mask).square().mean()
|
671 |
-
self.rolling_avg.add(f"loss/disentangle", disentangle_loss)
|
672 |
-
loss += disentangle_loss * self.disentangle_weight
|
673 |
-
|
674 |
-
if self.specialization_weight > 0.0 and self.sim_agg_heads > 1:
|
675 |
-
total_specialization_loss = 0.0
|
676 |
-
combos = list(combinations(range(self.sim_agg_heads), 2))
|
677 |
-
for i, j in combos:
|
678 |
-
specialization_loss_pair = (paired_sim[:, i].abs() * paired_sim[:, j].abs()).mean()
|
679 |
-
total_specialization_loss += specialization_loss_pair
|
680 |
-
avg_specialization_loss = total_specialization_loss / len(combos)
|
681 |
-
self.rolling_avg.add(f"loss/specialize", avg_specialization_loss)
|
682 |
-
loss += avg_specialization_loss * self.specialization_weight
|
683 |
-
|
684 |
-
if self.mixup_weight > 0.0:
|
685 |
-
b, _, h, w = image_mask.shape
|
686 |
-
neg_img_mask = torch.broadcast_to(
|
687 |
-
1 - image_mask.to(paired_sim).reshape(b, 1, h, w, 1, 1),
|
688 |
-
paired_sim.shape)
|
689 |
-
image_mixup_loss = (paired_sim * neg_img_mask).square().sum() / neg_img_mask.sum().clamp_min(0.1)
|
690 |
-
self.rolling_avg.add(f"loss/image_mixup", image_mixup_loss)
|
691 |
-
loss += image_mixup_loss * self.mixup_weight
|
692 |
-
|
693 |
-
sims = sims
|
694 |
-
loss += self.contrast_loss(sims)
|
695 |
-
self.rolling_avg.add(f"loss/total", loss)
|
696 |
-
|
697 |
-
return loss
|
698 |
-
|
699 |
-
def setup_hparams(self):
|
700 |
-
recalls = ['A_r1', 'A_r5', 'A_r10', 'I_r1', 'I_r5', 'I_r10']
|
701 |
-
|
702 |
-
if self.trainer.datamodule.use_extra_val_sets:
|
703 |
-
datasets = ["Places", "AudioSet"]
|
704 |
-
else:
|
705 |
-
datasets = ["Val"]
|
706 |
-
|
707 |
-
heads = ["total"]
|
708 |
-
|
709 |
-
metric_names = [
|
710 |
-
"hp/speech_basic_ap", "hp/speech_advanced_ap", "hp/sound_basic_ap",
|
711 |
-
"hp/speech_basic_iou", "hp/speech_advanced_iou", "hp/sound_basic_iou",
|
712 |
-
]
|
713 |
-
for dataset in datasets:
|
714 |
-
for head in heads:
|
715 |
-
for recall in recalls:
|
716 |
-
metric_names.append(f"hp/{dataset}/{head}/{recall}")
|
717 |
-
|
718 |
-
if self.sim_agg_heads == 2:
|
719 |
-
metric_names.extend(["hp/ap_dis", "hp/act_dis"])
|
720 |
-
|
721 |
-
if hasattr(self.trainer, "datamodule"):
|
722 |
-
all_hparams = {**self.hparams, **self.trainer.datamodule.hparams}
|
723 |
-
else:
|
724 |
-
all_hparams = self.hparams
|
725 |
-
|
726 |
-
starting_values = {n: torch.nan for n in metric_names}
|
727 |
-
self.logger.log_hyperparams(all_hparams, starting_values)
|
728 |
-
|
729 |
-
def on_train_start(self):
|
730 |
-
self.setup_hparams()
|
731 |
-
self.hparams_logged = True
|
732 |
-
|
733 |
-
def on_train_batch_start(self, batch, batch_idx):
|
734 |
-
remake_optimizers = False
|
735 |
-
|
736 |
-
if isinstance(self.image_aligner, ProgressiveGrowing):
|
737 |
-
should_remake = self.image_aligner.maybe_change_phase(self.global_step)
|
738 |
-
remake_optimizers = remake_optimizers or should_remake
|
739 |
-
if isinstance(self.audio_aligner, ProgressiveGrowing):
|
740 |
-
should_remake = self.audio_aligner.maybe_change_phase(self.global_step)
|
741 |
-
remake_optimizers = remake_optimizers or should_remake
|
742 |
-
|
743 |
-
if remake_optimizers:
|
744 |
-
raise NotImplementedError()
|
745 |
-
|
746 |
-
def _combine_preds(self, all_preds):
|
747 |
-
temp = {}
|
748 |
-
new_preds = {}
|
749 |
-
|
750 |
-
# Collect tensors for each key into lists
|
751 |
-
for d in all_preds:
|
752 |
-
for key, value in d.items():
|
753 |
-
if isinstance(value, torch.Tensor):
|
754 |
-
if key not in temp:
|
755 |
-
temp[key] = []
|
756 |
-
temp[key].append(value)
|
757 |
-
|
758 |
-
# Concatenate all tensors for each key using a single call to torch.cat
|
759 |
-
for key, tensor_list in temp.items():
|
760 |
-
new_preds[key] = torch.cat(tensor_list)
|
761 |
-
return new_preds
|
762 |
-
|
763 |
-
def training_step(self, batch, batch_idx):
|
764 |
-
assert batch[IMAGE_INPUT].shape[1] == 1
|
765 |
-
|
766 |
-
preds = self.forward(batch)
|
767 |
-
if DATA_SOURCE in batch:
|
768 |
-
preds[DATA_SOURCE] = batch[DATA_SOURCE]
|
769 |
-
|
770 |
-
if self.trainer.world_size > 1 and self.gather_tensors:
|
771 |
-
for k, v in preds.items():
|
772 |
-
new_v = v.contiguous()
|
773 |
-
preds[k] = torch.cat(GatherLayer.apply(new_v), dim=0)
|
774 |
-
|
775 |
-
if self.memory_buffer_size > 0:
|
776 |
-
new_preds = self._combine_preds(list(self.memory_buffer) + [preds])
|
777 |
-
else:
|
778 |
-
new_preds = preds
|
779 |
-
|
780 |
-
loss = self.loss(new_preds)
|
781 |
-
|
782 |
-
if self.memory_buffer_size > 0:
|
783 |
-
self.memory_buffer.append(self._recursive_detach(preds, gather=False))
|
784 |
-
|
785 |
-
if self.trainer.is_global_zero and self.global_step % 50 == 1:
|
786 |
-
writer = self.logger.experiment
|
787 |
-
self.rolling_avg.logall(lambda k, v: writer.add_scalar(k, v, global_step=self.global_step))
|
788 |
-
|
789 |
-
if self.trainer.scaler is not None:
|
790 |
-
self.log("loss_scale", self.trainer.scaler.get_scale())
|
791 |
-
|
792 |
-
if self.global_step % 10000 == 0 and self.global_step > 0:
|
793 |
-
print("RESETTING TFEVENT FILE")
|
794 |
-
self.logger.experiment.close()
|
795 |
-
self.logger.experiment._get_file_writer()
|
796 |
-
|
797 |
-
return loss
|
798 |
-
|
799 |
-
def on_validation_start(self) -> None:
|
800 |
-
if not self.hparams_logged:
|
801 |
-
self.setup_hparams()
|
802 |
-
self.hparams_logged = True
|
803 |
-
|
804 |
-
def _auto_gather(self, t):
|
805 |
-
if t.dtype == torch.bool:
|
806 |
-
t = t.to(torch.float)
|
807 |
-
|
808 |
-
if self.trainer.num_devices == 1:
|
809 |
-
return t.cpu()
|
810 |
-
|
811 |
-
t = torch.clone(t).contiguous()
|
812 |
-
if self.trainer.is_global_zero:
|
813 |
-
gather_list = [torch.zeros_like(t) for _ in range(dist.get_world_size())]
|
814 |
-
dist.gather(t, gather_list)
|
815 |
-
return torch.cat(gather_list, dim=0).cpu()
|
816 |
-
else:
|
817 |
-
dist.gather(t)
|
818 |
-
|
819 |
-
def validation_step(self, batch, batch_idx, dataloader_idx=0):
|
820 |
-
|
821 |
-
with torch.no_grad():
|
822 |
-
preds = self.forward(batch)
|
823 |
-
|
824 |
-
ret = {}
|
825 |
-
for k in preds.keys():
|
826 |
-
if k in preds:
|
827 |
-
ret[k] = self._auto_gather(preds[k])
|
828 |
-
|
829 |
-
batch_keys = [IMAGE_INPUT, "spec", "semseg", "num_pixels_per_class", 'total_length']
|
830 |
-
for k in batch_keys:
|
831 |
-
if k in batch:
|
832 |
-
ret[k] = self._auto_gather(batch[k])
|
833 |
-
|
834 |
-
if "metadata" in batch:
|
835 |
-
if isinstance(batch["metadata"]["id"], torch.Tensor):
|
836 |
-
ret["id"] = self._auto_gather(batch["metadata"]["id"])
|
837 |
-
ret["index"] = self._auto_gather(batch["metadata"]["index"])
|
838 |
-
|
839 |
-
return ret
|
840 |
-
|
841 |
-
def _calc_recalls(self, sim):
|
842 |
-
top_10_a = sim.topk(10, 0).indices == torch.arange(sim.shape[0]).unsqueeze(0)
|
843 |
-
top_10_i = (sim.topk(10, 1).indices == torch.arange(sim.shape[0]).unsqueeze(1)).permute(1, 0)
|
844 |
-
a_recall = lambda p: top_10_a[0:p].any(0).to(sim).mean()
|
845 |
-
i_recall = lambda p: top_10_i[0:p].any(0).to(sim).mean()
|
846 |
-
return {'A_r1': a_recall(1),
|
847 |
-
'A_r5': a_recall(5),
|
848 |
-
'A_r10': a_recall(10),
|
849 |
-
'I_r1': i_recall(1),
|
850 |
-
'I_r5': i_recall(5),
|
851 |
-
'I_r10': i_recall(10)}
|
852 |
-
|
853 |
-
def calc_recalls(self, preds, dataset):
|
854 |
-
sim = self.sim_agg.forward_batched(
|
855 |
-
preds=preds,
|
856 |
-
agg_heads=False,
|
857 |
-
batch_size=4,
|
858 |
-
).cpu()
|
859 |
-
|
860 |
-
all_metrics = dict()
|
861 |
-
for k, v in self._calc_recalls(sim.sum(-1)).items():
|
862 |
-
all_metrics[f"hp/{dataset}/total/" + k] = v
|
863 |
-
|
864 |
-
return all_metrics
|
865 |
-
|
866 |
-
def retrieval_validation(self, outputs, dataset_name):
|
867 |
-
if len(outputs) == 0:
|
868 |
-
return
|
869 |
-
|
870 |
-
if self.trainer.is_global_zero:
|
871 |
-
results = flatten_preds(outputs)
|
872 |
-
if not self.trainer.sanity_checking:
|
873 |
-
print(results[IMAGE_FEATS].shape[0])
|
874 |
-
# assert (results[IMAGE_FEATS].shape[0] == 1000)
|
875 |
-
results[IMAGE_FEATS] = results[IMAGE_FEATS].cpu()
|
876 |
-
results[AUDIO_FEATS] = results[AUDIO_FEATS].cuda()
|
877 |
-
if self.sim_use_cls:
|
878 |
-
results[AUDIO_CLS] = results[AUDIO_CLS].cuda()
|
879 |
-
results[AUDIO_CLS] = results[AUDIO_CLS].cuda()
|
880 |
-
|
881 |
-
results[AUDIO_MASK] = results[AUDIO_MASK].cuda()
|
882 |
-
|
883 |
-
recalls = self.calc_recalls(results, dataset_name)
|
884 |
-
|
885 |
-
results[IMAGE_FEATS] = results[IMAGE_FEATS].cuda()
|
886 |
-
|
887 |
-
writer = self.logger.experiment
|
888 |
-
print("here")
|
889 |
-
for name, v in recalls.items():
|
890 |
-
writer.add_scalar(f"{name}", v, self.global_step + 1)
|
891 |
-
|
892 |
-
def semseg_validation(self, speech_preds, sound_preds):
|
893 |
-
|
894 |
-
if self.trainer.is_global_zero:
|
895 |
-
from eval_utils import get_paired_heatmaps
|
896 |
-
def prep_preds(preds, loader):
|
897 |
-
results = flatten_preds(preds)
|
898 |
-
metadata = loader.dataset.metadata
|
899 |
-
ordered_metadata = metadata.iloc[results["index"].numpy(), :].copy()
|
900 |
-
ordered_metadata["order"] = range(len(ordered_metadata))
|
901 |
-
return results, ordered_metadata
|
902 |
-
|
903 |
-
[_, _, speech_loader, sound_loader] = self.trainer.val_dataloaders
|
904 |
-
speech_results, speech_metadata = prep_preds(speech_preds, speech_loader)
|
905 |
-
sound_results, sound_metadata = prep_preds(sound_preds, sound_loader)
|
906 |
-
|
907 |
-
self.sound_metrics, unique_sound_indices = get_paired_heatmaps(
|
908 |
-
self, sound_results, sound_metadata["ade_class_id"], None)
|
909 |
-
|
910 |
-
self.speech_metrics, unique_word_indices = get_paired_heatmaps(
|
911 |
-
self, speech_results, speech_metadata["ade_class_id"], speech_metadata["timing"])
|
912 |
-
|
913 |
-
writer = self.logger.experiment
|
914 |
-
|
915 |
-
all_metrics = {
|
916 |
-
**{"sound_" + k: v for k, v in self.sound_metrics.items()},
|
917 |
-
**{"speech_" + k: v for k, v in self.speech_metrics.items()},
|
918 |
-
}
|
919 |
-
|
920 |
-
for k, v in all_metrics.items():
|
921 |
-
writer.add_scalar(f"hp/{k}", torch.tensor(v).mean(), self.global_step + 1)
|
922 |
-
|
923 |
-
def disentangle_validation(self, word_preds, sound_preds):
|
924 |
-
|
925 |
-
if len(word_preds) == 0 or len(sound_preds) == 0:
|
926 |
-
return
|
927 |
-
|
928 |
-
if self.trainer.is_global_zero:
|
929 |
-
word_preds = flatten_preds(word_preds)
|
930 |
-
sound_preds = flatten_preds(sound_preds)
|
931 |
-
|
932 |
-
word_scores = self.sim_agg.get_pairwise_sims(
|
933 |
-
word_preds,
|
934 |
-
raw=False,
|
935 |
-
agg_sim=True,
|
936 |
-
agg_heads=False,
|
937 |
-
)
|
938 |
-
|
939 |
-
sound_scores = self.sim_agg.get_pairwise_sims(
|
940 |
-
sound_preds,
|
941 |
-
raw=False,
|
942 |
-
agg_sim=True,
|
943 |
-
agg_heads=False,
|
944 |
-
)
|
945 |
-
|
946 |
-
all_scores = torch.cat([word_scores, sound_scores], dim=0)
|
947 |
-
all_scores -= all_scores.min(dim=0, keepdim=True).values
|
948 |
-
all_scores /= all_scores.max(dim=0, keepdim=True).values.clamp_min(.0001)
|
949 |
-
|
950 |
-
is_words = torch.cat([
|
951 |
-
torch.ones(word_scores.shape[0]),
|
952 |
-
torch.zeros(sound_scores.shape[0])], dim=0).to(torch.bool)
|
953 |
-
|
954 |
-
assert all_scores.shape[1] == 2
|
955 |
-
ap_matrix = torch.zeros(2, 2)
|
956 |
-
act_matrix = torch.zeros(2, 2)
|
957 |
-
|
958 |
-
for head in range(2):
|
959 |
-
# writer.add_histogram(f"h{head}_all_scores", all_scores[:, head])
|
960 |
-
for dataset_num in range(2):
|
961 |
-
if dataset_num == 0:
|
962 |
-
labels = is_words
|
963 |
-
else:
|
964 |
-
labels = ~is_words
|
965 |
-
|
966 |
-
ap_matrix[head, dataset_num] = binary_average_precision(
|
967 |
-
all_scores[:, head].cpu(), labels.to(torch.int64).cpu())
|
968 |
-
|
969 |
-
act_matrix[head, dataset_num] = 1 - (all_scores[:, head][labels]).mean()
|
970 |
-
|
971 |
-
ap_dis = max(.5 * (ap_matrix[0, 0] + ap_matrix[1, 1]),
|
972 |
-
.5 * (ap_matrix[0, 1] + ap_matrix[1, 0]))
|
973 |
-
|
974 |
-
act_dis = max(.5 * (act_matrix[0, 0] + act_matrix[1, 1]),
|
975 |
-
.5 * (act_matrix[0, 1] + act_matrix[1, 0]))
|
976 |
-
|
977 |
-
print("AP", ap_matrix)
|
978 |
-
print("AP dis", ap_dis)
|
979 |
-
print("Act", act_matrix)
|
980 |
-
print("Act dis", act_dis)
|
981 |
-
|
982 |
-
writer = self.logger.experiment
|
983 |
-
writer.add_scalar("hp/ap_dis", ap_dis, self.global_step + 1)
|
984 |
-
writer.add_scalar("hp/act_dis", act_dis, self.global_step + 1)
|
985 |
-
|
986 |
-
def validation_epoch_end(self, outputs) -> None:
|
987 |
-
print("Val end")
|
988 |
-
with torch.no_grad():
|
989 |
-
if self.trainer.datamodule.use_extra_val_sets:
|
990 |
-
if self.sim_agg_heads == 2:
|
991 |
-
self.disentangle_validation(outputs[0], outputs[1])
|
992 |
-
self.retrieval_validation(outputs[0], "Places")
|
993 |
-
self.retrieval_validation(outputs[1], "AudioSet")
|
994 |
-
self.semseg_validation(outputs[2], outputs[3])
|
995 |
-
|
996 |
-
else:
|
997 |
-
print("HERE!")
|
998 |
-
self.retrieval_validation(outputs, "Val")
|
999 |
-
|
1000 |
-
writer = self.logger.experiment
|
1001 |
-
writer.flush()
|
1002 |
-
|
1003 |
-
def _recursive_detach(self, obj, gather=True):
|
1004 |
-
if isinstance(obj, torch.Tensor):
|
1005 |
-
if gather:
|
1006 |
-
return self._auto_gather(obj)
|
1007 |
-
else:
|
1008 |
-
obj.detach()
|
1009 |
-
elif isinstance(obj, dict):
|
1010 |
-
return {k: self._recursive_detach(v, gather) for k, v in obj.items()}
|
1011 |
-
elif isinstance(obj, list):
|
1012 |
-
return [self._recursive_detach(v, gather) for v in obj]
|
1013 |
-
else:
|
1014 |
-
return obj
|
1015 |
-
|
1016 |
-
def predict_step(self, batch, batch_idx: int, dataloader_idx: int = 0):
|
1017 |
-
with torch.no_grad():
|
1018 |
-
predictions = {}
|
1019 |
-
for k, v in batch.items():
|
1020 |
-
predictions[k] = self._recursive_detach(v)
|
1021 |
-
for k, v in self.forward(batch).items():
|
1022 |
-
predictions[k] = self._auto_gather(v)
|
1023 |
-
|
1024 |
-
return predictions
|
1025 |
-
|
1026 |
-
def _configure_optimizers(self, full_train, lr):
|
1027 |
-
params = [
|
1028 |
-
*self.audio_aligner.parameters(),
|
1029 |
-
*self.image_aligner.parameters(),
|
1030 |
-
*self.sim_cal.parameters(),
|
1031 |
-
*self.sim_agg.parameters()
|
1032 |
-
]
|
1033 |
-
|
1034 |
-
if (self.finetune_image_model or self.image_lora) and full_train:
|
1035 |
-
params.extend(self.image_model.parameters())
|
1036 |
-
|
1037 |
-
if (self.finetune_audio_model or self.audio_lora) and full_train:
|
1038 |
-
params.extend(self.audio_model.parameters())
|
1039 |
-
|
1040 |
-
if self.learn_audio_cls:
|
1041 |
-
params.append(self.audio_cls)
|
1042 |
-
|
1043 |
-
last_epoch = self.global_step - 1
|
1044 |
-
if self.optimizer == "adam":
|
1045 |
-
opt = torch.optim.Adam(params, lr=lr, eps=1e-7)
|
1046 |
-
elif self.optimizer == "nadam":
|
1047 |
-
opt = torch.optim.NAdam(params, lr=lr, eps=1e-7)
|
1048 |
-
else:
|
1049 |
-
raise ValueError(f"Unknown optimizer {self.optimizer}")
|
1050 |
-
|
1051 |
-
if self.lr_schedule == "sgdr":
|
1052 |
-
scheduler = CosineAnnealingWarmRestarts(
|
1053 |
-
opt, self.lr_cycle_length, 2, eta_min=lr * 2e-2, last_epoch=last_epoch)
|
1054 |
-
else:
|
1055 |
-
scheduler = LambdaLR(opt, lr_lambda=lambda step: 1.0, last_epoch=last_epoch)
|
1056 |
-
|
1057 |
-
if self.lr_warmup > 0:
|
1058 |
-
warmup = LambdaLR(
|
1059 |
-
opt,
|
1060 |
-
lr_lambda=lambda step: min(max(float(step), 0.0) / self.lr_warmup, 1.0),
|
1061 |
-
last_epoch=last_epoch,
|
1062 |
-
)
|
1063 |
-
scheduler = SequentialLR(
|
1064 |
-
opt,
|
1065 |
-
schedulers=[warmup, scheduler],
|
1066 |
-
milestones=[self.lr_warmup],
|
1067 |
-
last_epoch=last_epoch)
|
1068 |
-
|
1069 |
-
scheduler = {"scheduler": scheduler, "interval": "step"}
|
1070 |
-
|
1071 |
-
return [opt], [scheduler]
|
1072 |
-
|
1073 |
-
def configure_optimizers(self):
|
1074 |
-
if self.full_train:
|
1075 |
-
return self._configure_optimizers(self.full_train, self.lr)
|
1076 |
-
else:
|
1077 |
-
return self._configure_optimizers(self.full_train, self.pretrain_lr)
|
1078 |
-
|
1079 |
-
|
1080 |
-
@hydra.main(config_path="configs", config_name="av_align.yaml", version_base=None)
|
1081 |
-
def my_app(cfg: DictConfig) -> None:
|
1082 |
-
print(OmegaConf.to_yaml(cfg))
|
1083 |
-
seed_everything(cfg.seed, workers=True)
|
1084 |
-
|
1085 |
-
exp_name = f"{cfg.resume_prefix}"
|
1086 |
-
|
1087 |
-
if cfg.image_model_type == "dino8":
|
1088 |
-
patch_size = 8 * cfg.image_pool_width
|
1089 |
-
elif cfg.image_model_type == "cavmae":
|
1090 |
-
patch_size = 16 * cfg.image_pool_width
|
1091 |
-
elif cfg.image_model_type == "imagebind":
|
1092 |
-
patch_size = 16 * cfg.image_pool_width
|
1093 |
-
elif cfg.image_model_type == "clip":
|
1094 |
-
patch_size = 16 * cfg.image_pool_width
|
1095 |
-
elif cfg.image_model_type == "cavmae-mixed":
|
1096 |
-
patch_size = 16 * cfg.image_pool_width
|
1097 |
-
elif cfg.image_model_type == "dinov2":
|
1098 |
-
patch_size = 14 * cfg.image_pool_width
|
1099 |
-
else:
|
1100 |
-
raise ValueError(f"Unknown patch size for model {cfg.image_model_type}")
|
1101 |
-
|
1102 |
-
datamodule = AVDataModule(
|
1103 |
-
dataset_name=cfg.dataset_name,
|
1104 |
-
load_size=cfg.load_size,
|
1105 |
-
image_aug=cfg.image_aug,
|
1106 |
-
audio_aug=cfg.audio_aug,
|
1107 |
-
extra_audio_masking=cfg.extra_audio_masking,
|
1108 |
-
audio_model_type=cfg.audio_model_type,
|
1109 |
-
pytorch_data_dir=cfg.pytorch_data_dir,
|
1110 |
-
use_cached_embs=cfg.use_cached_embs,
|
1111 |
-
batch_size=cfg.batch_size,
|
1112 |
-
num_workers=cfg.num_workers,
|
1113 |
-
audio_level=cfg.audio_level,
|
1114 |
-
neg_audio=cfg.neg_audio,
|
1115 |
-
use_original_val_set=not cfg.use_extra_val_sets,
|
1116 |
-
use_extra_val_sets=cfg.use_extra_val_sets,
|
1117 |
-
data_for_plotting=False,
|
1118 |
-
quad_mixup=cfg.quad_mixup,
|
1119 |
-
bg_mixup=cfg.bg_mixup,
|
1120 |
-
patch_mixup=cfg.patch_mixup,
|
1121 |
-
patch_size=patch_size
|
1122 |
-
)
|
1123 |
-
datamodule.maybe_unpack(remove_source=cfg.submitting_to_aml)
|
1124 |
-
|
1125 |
-
aligner = create_model_from_cfg(LitAVAligner, cfg, {})
|
1126 |
-
|
1127 |
-
if cfg.starting_weights is not None:
|
1128 |
-
loaded = torch.load(join(cfg.output_root, cfg.starting_weights), map_location='cpu')
|
1129 |
-
state = loaded["state_dict"]
|
1130 |
-
aligner.load_state_dict(state, strict=cfg.load_strict)
|
1131 |
-
del state
|
1132 |
-
del loaded
|
1133 |
-
|
1134 |
-
if cfg.num_gpus > 1:
|
1135 |
-
# strategy = "ddp_sharded" # _find_unused_parameters_true"
|
1136 |
-
strategy = "ddp" # _find_unused_parameters_true"
|
1137 |
-
else:
|
1138 |
-
strategy = "auto"
|
1139 |
-
|
1140 |
-
if cfg.dataset_name in {"places-audio", "mixed", "audio-set", "mixed-full"}:
|
1141 |
-
val_args = dict(check_val_every_n_epoch=2)
|
1142 |
-
elif cfg.dataset_name in {"dolphin"}:
|
1143 |
-
val_args = dict(check_val_every_n_epoch=5)
|
1144 |
-
else:
|
1145 |
-
val_args = dict(val_check_interval=10000)
|
1146 |
-
|
1147 |
-
# val_args = dict(val_check_interval=1000)
|
1148 |
-
|
1149 |
-
def maybe_get_ckpt(ckpt_dir):
|
1150 |
-
if cfg.auto_resume and os.path.exists(ckpt_dir):
|
1151 |
-
print(f"Attempting to resume from {ckpt_dir}")
|
1152 |
-
candidates = os.listdir(ckpt_dir)
|
1153 |
-
assert (len(candidates) == 1)
|
1154 |
-
return join(ckpt_dir, candidates[0])
|
1155 |
-
elif cfg.auto_resume:
|
1156 |
-
print(f"Could not find checkpoint at {ckpt_dir}")
|
1157 |
-
return None
|
1158 |
-
else:
|
1159 |
-
return None
|
1160 |
-
|
1161 |
-
log_dir = join(cfg.output_root, "logs", cfg.grouping_name, exp_name)
|
1162 |
-
ckpt_dir = join(cfg.output_root, "checkpoints", cfg.grouping_name, exp_name)
|
1163 |
-
|
1164 |
-
import gc
|
1165 |
-
torch.cuda.empty_cache()
|
1166 |
-
gc.collect()
|
1167 |
-
|
1168 |
-
def run_exp(aligner, full_train):
|
1169 |
-
trainer_args = dict(
|
1170 |
-
accelerator='gpu',
|
1171 |
-
strategy=strategy,
|
1172 |
-
devices=cfg.num_gpus,
|
1173 |
-
num_sanity_val_steps=cfg.num_sanity_val_steps,
|
1174 |
-
log_every_n_steps=50,
|
1175 |
-
reload_dataloaders_every_n_epochs=10,
|
1176 |
-
precision="16",
|
1177 |
-
# profiler="simple",
|
1178 |
-
# precision="bf16",
|
1179 |
-
max_steps=cfg.max_steps,
|
1180 |
-
**val_args)
|
1181 |
-
|
1182 |
-
aligner.set_full_train(full_train)
|
1183 |
-
if full_train:
|
1184 |
-
suffix = "train"
|
1185 |
-
else:
|
1186 |
-
suffix = "pretrain"
|
1187 |
-
trainer_args["max_steps"] = cfg.pretrain_steps
|
1188 |
-
|
1189 |
-
print(f"Starting {suffix} phase")
|
1190 |
-
|
1191 |
-
logger = TensorBoardLogger(join(log_dir, suffix), default_hp_metric=False)
|
1192 |
-
callbacks = [
|
1193 |
-
ModelCheckpoint(join(ckpt_dir, suffix), every_n_epochs=1),
|
1194 |
-
LearningRateMonitor(logging_interval='step'),
|
1195 |
-
]
|
1196 |
-
Trainer(logger=logger,
|
1197 |
-
callbacks=callbacks,
|
1198 |
-
**trainer_args).fit(
|
1199 |
-
aligner,
|
1200 |
-
datamodule=datamodule,
|
1201 |
-
ckpt_path=maybe_get_ckpt(join(ckpt_dir, suffix)))
|
1202 |
-
|
1203 |
-
train_chkpt = maybe_get_ckpt(join(ckpt_dir, "train"))
|
1204 |
-
|
1205 |
-
gc.collect()
|
1206 |
-
if torch.cuda.is_available():
|
1207 |
-
torch.cuda.empty_cache()
|
1208 |
-
|
1209 |
-
if cfg.pretrain_steps > 0 and train_chkpt is None:
|
1210 |
-
print("---"*10)
|
1211 |
-
print("Setup with full_train = False")
|
1212 |
-
run_exp(aligner, full_train=False)
|
1213 |
-
print("---"*10)
|
1214 |
-
else:
|
1215 |
-
print("---"*10)
|
1216 |
-
print("Setup with full_train = False")
|
1217 |
-
run_exp(aligner, full_train=True)
|
1218 |
-
print("---"*10)
|
1219 |
-
|
1220 |
-
|
1221 |
-
if __name__ == "__main__":
|
1222 |
-
my_app()
|
|
|
1 |
+
import os
|
2 |
+
from collections import deque
|
3 |
+
from itertools import combinations
|
4 |
+
from os.path import join
|
5 |
+
|
6 |
+
import hydra
|
7 |
+
import numpy as np
|
8 |
+
import pytorch_lightning as pl
|
9 |
+
import torch
|
10 |
+
import torch.distributed as dist
|
11 |
+
import torch.nn.functional as F
|
12 |
+
from omegaconf import DictConfig, OmegaConf
|
13 |
+
from peft import get_peft_model, LoraConfig
|
14 |
+
from pytorch_lightning import Trainer
|
15 |
+
from pytorch_lightning import seed_everything
|
16 |
+
from pytorch_lightning.callbacks import LearningRateMonitor, ModelCheckpoint
|
17 |
+
from pytorch_lightning.loggers import TensorBoardLogger
|
18 |
+
from pytorch_lightning.utilities import grad_norm
|
19 |
+
from torch.optim.lr_scheduler import CosineAnnealingWarmRestarts, SequentialLR, LambdaLR
|
20 |
+
from torchmetrics.functional.classification import binary_average_precision
|
21 |
+
|
22 |
+
from huggingface_hub import PyTorchModelHubMixin
|
23 |
+
|
24 |
+
from DenseAV.denseav.aggregators import get_aggregator
|
25 |
+
from DenseAV.denseav.aligners import get_aligner, ProgressiveGrowing
|
26 |
+
from DenseAV.denseav.constants import *
|
27 |
+
from DenseAV.denseav.data.AVDatasets import AVDataModule
|
28 |
+
from DenseAV.denseav.shared import flatten_preds, GatherLayer, \
|
29 |
+
get_image_featurizer, get_audio_featurizer, RollingAvg, create_model_from_cfg
|
30 |
+
|
31 |
+
torch.multiprocessing.set_sharing_strategy('file_system')
|
32 |
+
|
33 |
+
|
34 |
+
def _imposter_indices_helper(true_indices: torch.Tensor, samples: torch.Tensor):
|
35 |
+
mask = (true_indices == samples).to(torch.int64)
|
36 |
+
n = mask.shape[0]
|
37 |
+
|
38 |
+
if not mask.any():
|
39 |
+
return samples
|
40 |
+
else:
|
41 |
+
new_samples = torch.randint(0, n, size=(n,), device=true_indices.device)
|
42 |
+
comb_samples = mask * new_samples + (1 - mask) * samples
|
43 |
+
return _imposter_indices_helper(true_indices, comb_samples)
|
44 |
+
|
45 |
+
|
46 |
+
def imposter_indices(n, device):
|
47 |
+
return _imposter_indices_helper(
|
48 |
+
torch.arange(0, n, device=device),
|
49 |
+
torch.randint(0, n, size=(n,), device=device))
|
50 |
+
|
51 |
+
|
52 |
+
def get_sim_per_row(image_outputs, audio_outputs, n_frames, sim_type):
|
53 |
+
max_t = audio_outputs.shape[-1]
|
54 |
+
oh = F.one_hot(n_frames - 1, num_classes=max_t)
|
55 |
+
audio_mask = 1 - torch.cumsum(oh, dim=1)
|
56 |
+
audio_mask = F.pad(audio_mask, [1, 0], value=1)[:, :max_t].to(audio_outputs.dtype)
|
57 |
+
|
58 |
+
full_sim = torch.einsum("bct,bchw->bthw", audio_outputs, image_outputs)
|
59 |
+
expanded_am = audio_mask.unsqueeze(-1).unsqueeze(-1)
|
60 |
+
|
61 |
+
if sim_type.endswith("mi"):
|
62 |
+
offset = 10 * (full_sim.max() - full_sim.min())
|
63 |
+
full_sim = (full_sim - ((1 - expanded_am) * offset)).max(1, keepdim=True).values
|
64 |
+
|
65 |
+
if sim_type.startswith("mi"):
|
66 |
+
full_sim = full_sim.max(-1, keepdim=True).values.max(-2, keepdim=True).values
|
67 |
+
|
68 |
+
if sim_type.endswith("sa"):
|
69 |
+
full_sim = (full_sim * (expanded_am / expanded_am.sum(1, keepdim=True).clamp_min(1))).sum(1, keepdim=True)
|
70 |
+
|
71 |
+
return full_sim.mean(dim=[1, 2, 3])
|
72 |
+
|
73 |
+
|
74 |
+
def sampled_margin_rank_loss(image_outputs, audio_outputs, n_frames, sim_type, margin=1.):
|
75 |
+
"""
|
76 |
+
Computes the triplet margin ranking loss for each anchor image/caption pair
|
77 |
+
The impostor image/caption is randomly sampled from the minibatch
|
78 |
+
"""
|
79 |
+
assert (image_outputs.dim() == 4)
|
80 |
+
assert (audio_outputs.dim() == 3)
|
81 |
+
n = image_outputs.size(0)
|
82 |
+
imp_ind_i = imposter_indices(n, image_outputs.device)
|
83 |
+
imp_ind_a = imposter_indices(n, image_outputs.device)
|
84 |
+
true_sim = get_sim_per_row(image_outputs, audio_outputs, n_frames, sim_type)
|
85 |
+
imp_sim_i = get_sim_per_row(image_outputs[imp_ind_i], audio_outputs, n_frames, sim_type)
|
86 |
+
imp_sim_a = get_sim_per_row(image_outputs, audio_outputs[imp_ind_a], n_frames[imp_ind_a], sim_type)
|
87 |
+
a2i_loss = (margin + imp_sim_i - true_sim).clamp_min(0)
|
88 |
+
i2a_loss = (margin + imp_sim_a - true_sim).clamp_min(0)
|
89 |
+
return (a2i_loss + i2a_loss).mean() / 2
|
90 |
+
|
91 |
+
|
92 |
+
class SimilarityCalibrator(torch.nn.Module):
|
93 |
+
|
94 |
+
def __init__(self, cal_init, max_w=100, min_w=.01, subtract_mean=True, use_bias=False):
|
95 |
+
super().__init__()
|
96 |
+
self.max_w = max_w
|
97 |
+
self.min_w = min_w
|
98 |
+
self.w = torch.nn.Parameter(torch.tensor([cal_init]).log())
|
99 |
+
|
100 |
+
self.use_bias = use_bias
|
101 |
+
if self.use_bias:
|
102 |
+
self.b = torch.nn.Parameter(torch.tensor([0.0]))
|
103 |
+
|
104 |
+
self.subtract_mean = subtract_mean
|
105 |
+
|
106 |
+
def get_w(self):
|
107 |
+
return torch.exp(self.w).clamp_max(self.max_w).clamp_min(self.min_w)
|
108 |
+
|
109 |
+
def forward(self, x):
|
110 |
+
sims = self.get_w() * x
|
111 |
+
|
112 |
+
if self.use_bias:
|
113 |
+
sims = sims + self.b
|
114 |
+
|
115 |
+
if self.subtract_mean:
|
116 |
+
return sims - sims.mean()
|
117 |
+
else:
|
118 |
+
return sims
|
119 |
+
|
120 |
+
|
121 |
+
class SpatialDropout(torch.nn.Module):
|
122 |
+
|
123 |
+
def __init__(self, p, *args, **kwargs):
|
124 |
+
super().__init__(*args, **kwargs)
|
125 |
+
self.p = p
|
126 |
+
|
127 |
+
def forward(self, x):
|
128 |
+
b, c, h, w = x.shape
|
129 |
+
dropout = torch.rand((b, 1, h, w), dtype=x.dtype, device=x.device) > self.p
|
130 |
+
|
131 |
+
if self.training:
|
132 |
+
return x * dropout
|
133 |
+
else:
|
134 |
+
return x
|
135 |
+
|
136 |
+
|
137 |
+
class LitAVAligner(pl.LightningModule, PyTorchModelHubMixin, repo_url="https://github.com/mhamilton723/DenseAV", license="mit", tags=["denseav"]):
|
138 |
+
def __init__(self,
|
139 |
+
code_dim,
|
140 |
+
image_model_type,
|
141 |
+
image_model_token_type,
|
142 |
+
image_aligner_type,
|
143 |
+
image_pool_width,
|
144 |
+
audio_model_type,
|
145 |
+
audio_aligner_type,
|
146 |
+
audio_pool_width,
|
147 |
+
audio_lora,
|
148 |
+
audio_lora_rank,
|
149 |
+
image_lora,
|
150 |
+
image_lora_rank,
|
151 |
+
gradient_clipping,
|
152 |
+
learn_audio_cls,
|
153 |
+
silence_l1,
|
154 |
+
silence_l2,
|
155 |
+
tv_weight,
|
156 |
+
nonneg_sim,
|
157 |
+
nonneg_pressure,
|
158 |
+
pretrain_lr,
|
159 |
+
lr,
|
160 |
+
lr_warmup,
|
161 |
+
lr_schedule,
|
162 |
+
lr_cycle_length,
|
163 |
+
optimizer,
|
164 |
+
gather_tensors,
|
165 |
+
sim_agg_type,
|
166 |
+
sim_agg_heads,
|
167 |
+
sim_use_cls,
|
168 |
+
disentangle_weight,
|
169 |
+
norm_vectors,
|
170 |
+
cal_init,
|
171 |
+
cal_balance_weight,
|
172 |
+
loss_type,
|
173 |
+
loss_margin,
|
174 |
+
mask_silence,
|
175 |
+
finetune_image_model,
|
176 |
+
finetune_audio_model,
|
177 |
+
use_cached_embs,
|
178 |
+
output_root,
|
179 |
+
neg_audio,
|
180 |
+
neg_audio_weight,
|
181 |
+
head_agg,
|
182 |
+
adaptive_clipping,
|
183 |
+
specialization_weight,
|
184 |
+
spatial_dropout,
|
185 |
+
channel_dropout,
|
186 |
+
mixup_weight,
|
187 |
+
memory_buffer_size,
|
188 |
+
loss_leak,
|
189 |
+
):
|
190 |
+
super().__init__()
|
191 |
+
|
192 |
+
self.code_dim = code_dim
|
193 |
+
self.image_model_type = image_model_type
|
194 |
+
self.image_model_token_type = image_model_token_type
|
195 |
+
self.image_aligner_type = image_aligner_type
|
196 |
+
self.image_pool_width = image_pool_width
|
197 |
+
self.audio_model_type = audio_model_type
|
198 |
+
self.audio_aligner_type = audio_aligner_type
|
199 |
+
self.audio_pool_width = audio_pool_width
|
200 |
+
|
201 |
+
self.gradient_clipping = gradient_clipping
|
202 |
+
self.learn_audio_cls = learn_audio_cls
|
203 |
+
self.silence_l1 = silence_l1
|
204 |
+
self.silence_l2 = silence_l2
|
205 |
+
|
206 |
+
self.tv_weight = tv_weight
|
207 |
+
self.nonneg_sim = nonneg_sim
|
208 |
+
self.nonneg_pressure = nonneg_pressure
|
209 |
+
self.pretrain_lr = pretrain_lr
|
210 |
+
self.lr = lr
|
211 |
+
self.lr_warmup = lr_warmup
|
212 |
+
self.lr_schedule = lr_schedule
|
213 |
+
self.lr_cycle_length = lr_cycle_length
|
214 |
+
self.optimizer = optimizer
|
215 |
+
self.gather_tensors = gather_tensors
|
216 |
+
self.sim_agg_type = sim_agg_type
|
217 |
+
self.sim_agg_heads = sim_agg_heads
|
218 |
+
self.sim_use_cls = sim_use_cls
|
219 |
+
self.disentangle_weight = disentangle_weight
|
220 |
+
|
221 |
+
self.norm_vectors = norm_vectors
|
222 |
+
self.cal_init = cal_init
|
223 |
+
self.cal_balance_weight = cal_balance_weight
|
224 |
+
self.loss_type = loss_type
|
225 |
+
self.loss_margin = loss_margin
|
226 |
+
self.mask_silence = mask_silence
|
227 |
+
self.finetune_image_model = finetune_image_model
|
228 |
+
self.finetune_audio_model = finetune_audio_model
|
229 |
+
self.use_cached_embs = use_cached_embs
|
230 |
+
self.output_root = output_root
|
231 |
+
self.audio_lora = audio_lora
|
232 |
+
self.audio_lora_rank = audio_lora_rank
|
233 |
+
self.image_lora = image_lora
|
234 |
+
self.image_lora_rank = image_lora_rank
|
235 |
+
self.neg_audio = neg_audio
|
236 |
+
self.neg_audio_weight = neg_audio_weight
|
237 |
+
self.head_agg = head_agg
|
238 |
+
|
239 |
+
self.adaptive_clipping = adaptive_clipping
|
240 |
+
self.specialization_weight = specialization_weight
|
241 |
+
self.spatial_dropout = spatial_dropout
|
242 |
+
self.channel_dropout = channel_dropout
|
243 |
+
self.mixup_weight = mixup_weight
|
244 |
+
|
245 |
+
self.memory_buffer_size = memory_buffer_size
|
246 |
+
self.memory_buffer = deque(maxlen=self.memory_buffer_size)
|
247 |
+
self.loss_leak = loss_leak
|
248 |
+
|
249 |
+
self.full_train = False # Added by me
|
250 |
+
|
251 |
+
if self.audio_model_type in {"audiomae", "audiomae-finetuned", "cavmae", "cavmae-mixed", "imagebind"}:
|
252 |
+
self.audio_input = "spec"
|
253 |
+
elif self.audio_model_type == "davenet":
|
254 |
+
self.audio_input = "davenet_spec"
|
255 |
+
elif self.audio_model_type == "fnac":
|
256 |
+
self.audio_input = "fnac_spec"
|
257 |
+
else:
|
258 |
+
self.audio_input = "audio"
|
259 |
+
|
260 |
+
extra_model_args = dict(output_root=output_root)
|
261 |
+
|
262 |
+
self.image_model, _, self.image_feat_dim = get_image_featurizer(
|
263 |
+
image_model_type, token_type=self.image_model_token_type, **extra_model_args)
|
264 |
+
|
265 |
+
self.image_model.eval()
|
266 |
+
if not self.finetune_image_model:
|
267 |
+
for param in self.image_model.parameters():
|
268 |
+
param.requires_grad = False
|
269 |
+
|
270 |
+
if image_model_type in {"cavmae", "cavmae-mixed", "imagebind", "fnac"}:
|
271 |
+
extra_model_args["model"] = self.image_model.model
|
272 |
+
|
273 |
+
if use_cached_embs:
|
274 |
+
_, self.audio_feat_dim = get_audio_featurizer(audio_model_type, **extra_model_args)
|
275 |
+
else:
|
276 |
+
self.audio_model, self.audio_feat_dim = get_audio_featurizer(audio_model_type, **extra_model_args)
|
277 |
+
|
278 |
+
self.audio_model.eval()
|
279 |
+
if not self.finetune_audio_model:
|
280 |
+
for param in self.audio_model.parameters():
|
281 |
+
param.requires_grad = False
|
282 |
+
|
283 |
+
if self.image_lora:
|
284 |
+
if self.image_model_type in {"sam", "dino8", "dinov2", "cavmae", "cavmae-mixed"}:
|
285 |
+
target_modules = ["qkv"]
|
286 |
+
elif self.image_model_type == "clip":
|
287 |
+
target_modules = ["out_proj"]
|
288 |
+
elif self.image_model_type == "imagebind":
|
289 |
+
target_modules = ["out_proj", "fc1", "fc2"]
|
290 |
+
else:
|
291 |
+
target_modules = ["q", "k", "v"]
|
292 |
+
|
293 |
+
peft_config = LoraConfig(
|
294 |
+
target_modules=target_modules,
|
295 |
+
inference_mode=False,
|
296 |
+
r=image_lora_rank,
|
297 |
+
lora_alpha=32,
|
298 |
+
lora_dropout=0.1
|
299 |
+
)
|
300 |
+
self.image_model = get_peft_model(self.image_model, peft_config)
|
301 |
+
self.image_model.print_trainable_parameters()
|
302 |
+
|
303 |
+
if self.audio_lora:
|
304 |
+
if self.audio_model_type == "hubert":
|
305 |
+
target_modules = ["q_proj", "k_proj", "v_proj"]
|
306 |
+
else:
|
307 |
+
target_modules = ["q", "k", "v"]
|
308 |
+
|
309 |
+
peft_config = LoraConfig(
|
310 |
+
inference_mode=False,
|
311 |
+
target_modules=target_modules,
|
312 |
+
r=audio_lora_rank,
|
313 |
+
lora_alpha=32,
|
314 |
+
lora_dropout=0.1
|
315 |
+
)
|
316 |
+
self.audio_model = get_peft_model(self.audio_model, peft_config)
|
317 |
+
self.audio_model.print_trainable_parameters()
|
318 |
+
|
319 |
+
shared_aligner_args = dict(out_dim=self.code_dim)
|
320 |
+
|
321 |
+
self.audio_aligner = get_aligner(
|
322 |
+
self.audio_aligner_type, self.audio_feat_dim, **shared_aligner_args)
|
323 |
+
self.image_aligner = get_aligner(
|
324 |
+
self.image_aligner_type, self.image_feat_dim, **shared_aligner_args)
|
325 |
+
|
326 |
+
if self.loss_type == "nce":
|
327 |
+
self.sim_cal = SimilarityCalibrator(self.cal_init, subtract_mean=True, use_bias=False)
|
328 |
+
else:
|
329 |
+
self.sim_cal = SimilarityCalibrator(self.cal_init, subtract_mean=False, use_bias=True)
|
330 |
+
|
331 |
+
if self.learn_audio_cls:
|
332 |
+
self.audio_cls = torch.nn.Parameter(torch.randn(self.audio_feat_dim))
|
333 |
+
|
334 |
+
if self.spatial_dropout > 0.0:
|
335 |
+
self.spatial_dropout_layer = SpatialDropout(self.spatial_dropout)
|
336 |
+
|
337 |
+
if self.channel_dropout > 0.0:
|
338 |
+
self.channel_dropout_layer = torch.nn.Dropout2d(self.channel_dropout)
|
339 |
+
|
340 |
+
self.sim_agg = get_aggregator(
|
341 |
+
self.sim_agg_type,
|
342 |
+
self.nonneg_sim,
|
343 |
+
self.mask_silence,
|
344 |
+
self.sim_agg_heads,
|
345 |
+
self.head_agg,
|
346 |
+
self.sim_use_cls,
|
347 |
+
dim=self.image_feat_dim
|
348 |
+
)
|
349 |
+
|
350 |
+
self.hparams_logged = False
|
351 |
+
self.rolling_avg = RollingAvg(50)
|
352 |
+
self.grad_avg = RollingAvg(50, nonzero=True)
|
353 |
+
|
354 |
+
self.save_hyperparameters()
|
355 |
+
|
356 |
+
def set_full_train(self, full_train):
|
357 |
+
self.full_train = full_train
|
358 |
+
|
359 |
+
def prep_feats(self, feats, is_audio):
|
360 |
+
|
361 |
+
if not is_audio and self.training and self.image_pool_width > 1:
|
362 |
+
feats = torch.nn.AvgPool2d(self.image_pool_width)(feats)
|
363 |
+
|
364 |
+
if is_audio and self.training and self.audio_pool_width > 1:
|
365 |
+
feats = torch.nn.AvgPool2d((1, self.audio_pool_width))(feats)
|
366 |
+
|
367 |
+
if self.norm_vectors:
|
368 |
+
feats = F.normalize(feats, dim=1)
|
369 |
+
|
370 |
+
return feats
|
371 |
+
|
372 |
+
def on_before_optimizer_step(self, optimizer, optimizer_idx):
|
373 |
+
norms = grad_norm(self, norm_type=2)
|
374 |
+
avg_grads = self.grad_avg.get_all()
|
375 |
+
params = {
|
376 |
+
f"grad_2.0_norm/{name}": p
|
377 |
+
for name, p in self.named_parameters()
|
378 |
+
if p.grad is not None
|
379 |
+
}
|
380 |
+
|
381 |
+
if self.adaptive_clipping:
|
382 |
+
for k in norms.keys():
|
383 |
+
if k in params:
|
384 |
+
avg_grad = max(avg_grads.get(k, norms[k]), 1e-5)
|
385 |
+
if self.global_step > 10 and norms[k] > avg_grad * 5:
|
386 |
+
print(f"Bad grad for {k}: {norms[k]} scaling to {avg_grad * 5}")
|
387 |
+
torch.nn.utils.clip_grad_norm_(params[k], avg_grad * 5)
|
388 |
+
norms[k] = avg_grad * 5
|
389 |
+
|
390 |
+
if norms[k] > self.gradient_clipping:
|
391 |
+
# print(f"Bad grad for {k}: {norms[k]} scaling to {self.gradient_clipping}")
|
392 |
+
torch.nn.utils.clip_grad_norm_(params[k], self.gradient_clipping)
|
393 |
+
|
394 |
+
# self.grad_avg.add_all(norms)
|
395 |
+
# self.log_dict(norms)
|
396 |
+
|
397 |
+
def interpolate_mask(self, mask, target_length, discrete):
|
398 |
+
b, t = mask.shape
|
399 |
+
|
400 |
+
mask = F.interpolate(mask.reshape(b, 1, 1, t), (1, target_length), mode="bilinear") \
|
401 |
+
.reshape(b, target_length)
|
402 |
+
|
403 |
+
if discrete:
|
404 |
+
mask = mask > 0.01
|
405 |
+
sums = mask.sum(1)
|
406 |
+
all_zeros = torch.where(sums == 0)[0]
|
407 |
+
if len(all_zeros) > 0:
|
408 |
+
print("Fixing a bad mask")
|
409 |
+
for entry in all_zeros:
|
410 |
+
mask[entry, torch.randint(0, target_length - 1, size=())] = True
|
411 |
+
else:
|
412 |
+
return mask
|
413 |
+
return mask
|
414 |
+
|
415 |
+
def forward_audio(self, batch):
|
416 |
+
if self.use_cached_embs:
|
417 |
+
audio_feats = batch["audio_emb"]
|
418 |
+
if "audio_cls" in batch:
|
419 |
+
audio_cls = batch["audio_cls"]
|
420 |
+
else:
|
421 |
+
audio_cls = None
|
422 |
+
else:
|
423 |
+
audio = batch[self.audio_input]
|
424 |
+
|
425 |
+
if self.full_train:
|
426 |
+
audio_feats, audio_cls = self.audio_model(audio, include_cls=True)
|
427 |
+
else:
|
428 |
+
with torch.no_grad():
|
429 |
+
audio_feats, audio_cls = self.audio_model(audio, include_cls=True)
|
430 |
+
|
431 |
+
mask = batch[AUDIO_MASK] if AUDIO_MASK in batch else torch.ones_like(audio)
|
432 |
+
pos_mask = batch[AUDIO_POS_MASK] if AUDIO_POS_MASK in batch else torch.ones_like(audio)
|
433 |
+
|
434 |
+
if self.learn_audio_cls:
|
435 |
+
assert audio_cls is None
|
436 |
+
audio_cls = torch.broadcast_to(self.audio_cls.unsqueeze(0), (audio_feats.shape[0], audio_feats.shape[1]))
|
437 |
+
|
438 |
+
aligned_audio_feats, aligned_audio_cls = self.audio_aligner(audio_feats, audio_cls)
|
439 |
+
|
440 |
+
if self.channel_dropout > 0.0:
|
441 |
+
aligned_audio_feats = self.channel_dropout_layer(aligned_audio_feats)
|
442 |
+
|
443 |
+
aligned_audio_feats = self.prep_feats(aligned_audio_feats, is_audio=True)
|
444 |
+
audio_mask = self.interpolate_mask(mask, aligned_audio_feats.shape[-1], True)
|
445 |
+
audio_pos_mask = self.interpolate_mask(pos_mask, aligned_audio_feats.shape[-1], False)
|
446 |
+
|
447 |
+
ret = {
|
448 |
+
AUDIO_MASK: audio_mask,
|
449 |
+
AUDIO_POS_MASK: audio_pos_mask,
|
450 |
+
AUDIO_FEATS: aligned_audio_feats,
|
451 |
+
}
|
452 |
+
|
453 |
+
if aligned_audio_cls is not None:
|
454 |
+
ret[AUDIO_CLS] = aligned_audio_cls
|
455 |
+
|
456 |
+
return ret
|
457 |
+
|
458 |
+
# @autocast(device_type="cuda", enabled=False)
|
459 |
+
def forward_image(self, batch, max_batch_size=None):
|
460 |
+
|
461 |
+
with torch.no_grad():
|
462 |
+
image = batch[IMAGE_INPUT]
|
463 |
+
b, nf, c, h, w = image.shape
|
464 |
+
image = image.reshape(b * nf, c, h, w)
|
465 |
+
|
466 |
+
if max_batch_size is None:
|
467 |
+
max_batch_size = image.shape[0]
|
468 |
+
|
469 |
+
chunks = [image[i:i + max_batch_size] for i in range(0, image.shape[0], max_batch_size)]
|
470 |
+
|
471 |
+
all_image_feats = []
|
472 |
+
all_image_cls = []
|
473 |
+
|
474 |
+
for chunk in chunks:
|
475 |
+
if self.full_train:
|
476 |
+
image_feats, image_cls = self.image_model(chunk, include_cls=True)
|
477 |
+
else:
|
478 |
+
with torch.no_grad():
|
479 |
+
image_feats, image_cls = self.image_model(chunk, include_cls=True)
|
480 |
+
|
481 |
+
aligned_image_feats, aligned_image_cls = self.image_aligner(image_feats, image_cls)
|
482 |
+
|
483 |
+
all_image_feats.append(aligned_image_feats)
|
484 |
+
all_image_cls.append(aligned_image_cls)
|
485 |
+
|
486 |
+
# Stitch the chunks back together
|
487 |
+
aligned_image_feats = torch.cat(all_image_feats, dim=0)
|
488 |
+
aligned_image_cls = torch.cat(all_image_cls, dim=0)
|
489 |
+
|
490 |
+
if self.channel_dropout > 0.0:
|
491 |
+
aligned_image_feats = self.channel_dropout_layer(aligned_image_feats)
|
492 |
+
|
493 |
+
if self.spatial_dropout > 0.0:
|
494 |
+
aligned_image_feats = self.spatial_dropout_layer(aligned_image_feats)
|
495 |
+
|
496 |
+
aligned_image_feats = self.prep_feats(aligned_image_feats, is_audio=False)
|
497 |
+
ret = {IMAGE_FEATS: aligned_image_feats}
|
498 |
+
|
499 |
+
if IMAGE_MASK in batch:
|
500 |
+
with torch.no_grad():
|
501 |
+
mask = batch[IMAGE_MASK]
|
502 |
+
mask = mask.reshape(b * nf, 1, h, w)
|
503 |
+
b, c, h, w = aligned_image_feats.shape
|
504 |
+
mask = F.adaptive_avg_pool2d(mask.to(aligned_image_feats), output_size=(h, w))
|
505 |
+
ret[IMAGE_MASK] = mask
|
506 |
+
|
507 |
+
if aligned_image_cls is not None:
|
508 |
+
ret[IMAGE_CLS] = aligned_image_cls
|
509 |
+
|
510 |
+
return ret
|
511 |
+
|
512 |
+
def forward(self, batch):
|
513 |
+
audio_feat_dict = self.forward_audio(batch)
|
514 |
+
image_feat_dict = self.forward_image(batch)
|
515 |
+
return {**image_feat_dict, **audio_feat_dict}
|
516 |
+
|
517 |
+
def contrast_loss(self, sims):
|
518 |
+
b = sims.shape[0]
|
519 |
+
sims = sims - torch.eye(b, b, device=sims.device) * self.loss_margin
|
520 |
+
sims_1 = sims
|
521 |
+
sims_2 = sims.permute(1, 0)
|
522 |
+
|
523 |
+
if self.loss_leak > 0.0:
|
524 |
+
id = torch.eye(sims_1.shape[0], sims_1.shape[1], device=sims.device, dtype=sims.dtype)
|
525 |
+
label_mask = id * (1 - self.loss_leak)
|
526 |
+
label_mask += (1 - id) * self.loss_leak / (sims_1.shape[0] - 1)
|
527 |
+
label_mask /= label_mask.sum(dim=1, keepdim=True)
|
528 |
+
else:
|
529 |
+
label_mask = torch.eye(sims_1.shape[0], sims_1.shape[1], device=sims.device, dtype=sims.dtype)
|
530 |
+
|
531 |
+
labels = torch.arange(0, sims.shape[0], device=sims.device)
|
532 |
+
self.rolling_avg.add(f"acc/1", (sims.argmax(dim=1) == labels).to(sims).mean())
|
533 |
+
self.rolling_avg.add(f"acc/2", (sims.argmax(dim=0) == labels).to(sims).mean())
|
534 |
+
|
535 |
+
if self.loss_type == "margin":
|
536 |
+
margin_loss_tensor = (sims - torch.diag(sims)).clamp_min(0)
|
537 |
+
margin_loss = margin_loss_tensor.mean()
|
538 |
+
self.rolling_avg.add(f"loss/frac_nonzero", (margin_loss_tensor > 0).to(sims).mean())
|
539 |
+
self.rolling_avg.add(f"loss/margin", margin_loss)
|
540 |
+
return margin_loss
|
541 |
+
elif self.loss_type == "ce":
|
542 |
+
ce_loss = 1 / 2 * F.cross_entropy(sims_1, labels) + \
|
543 |
+
1 / 2 * F.cross_entropy(sims_2, labels)
|
544 |
+
self.rolling_avg.add(f"loss/ce", ce_loss)
|
545 |
+
return ce_loss
|
546 |
+
elif self.loss_type == "bce":
|
547 |
+
bce_loss = F.binary_cross_entropy_with_logits(sims_1.flatten(), label_mask.flatten())
|
548 |
+
self.rolling_avg.add(f"loss/bce", bce_loss)
|
549 |
+
return bce_loss
|
550 |
+
elif self.loss_type == "nce":
|
551 |
+
nce_loss = 1 / 2 * (-F.log_softmax(sims_1, dim=-1) * label_mask).sum(1).mean() + \
|
552 |
+
1 / 2 * (-F.log_softmax(sims_2, dim=-1) * label_mask).sum(1).mean()
|
553 |
+
self.rolling_avg.add(f"loss/nce", nce_loss)
|
554 |
+
return nce_loss
|
555 |
+
else:
|
556 |
+
raise ValueError(f"Unknown loss type {self.loss_type}")
|
557 |
+
|
558 |
+
def loss(self, preds):
|
559 |
+
image_feats = preds[IMAGE_FEATS]
|
560 |
+
audio_feats = preds[AUDIO_FEATS]
|
561 |
+
audio_mask = preds[AUDIO_MASK]
|
562 |
+
image_mask = preds[IMAGE_MASK]
|
563 |
+
audio_pos_mask = preds[AUDIO_POS_MASK]
|
564 |
+
if DATA_SOURCE in preds:
|
565 |
+
source = preds[DATA_SOURCE].to(torch.int64)
|
566 |
+
else:
|
567 |
+
source = None
|
568 |
+
|
569 |
+
uncal_sims = self.sim_agg(preds, agg_heads=True)
|
570 |
+
sims = self.sim_cal(uncal_sims)
|
571 |
+
|
572 |
+
_mask = 1 - torch.eye(sims.shape[0], device=sims.device)
|
573 |
+
self.log(f"sim/pos", torch.diag(sims).mean())
|
574 |
+
self.log(f"sim/neg", (sims * _mask).sum() / (_mask.sum()))
|
575 |
+
self.log(f"sim/uncal_pos", torch.diag(uncal_sims).mean())
|
576 |
+
self.log(f"sim/uncal_neg", (uncal_sims * _mask).sum() / (_mask.sum()))
|
577 |
+
|
578 |
+
b, c, h, w = image_feats.shape
|
579 |
+
b, c, f, t = audio_feats.shape
|
580 |
+
n_samples = 250
|
581 |
+
|
582 |
+
nh = self.sim_agg_heads
|
583 |
+
image_feats_by_head = image_feats.reshape(b, self.sim_agg_heads, c // nh, h, w)
|
584 |
+
audio_feats_by_head = audio_feats.reshape(b, self.sim_agg_heads, c // nh, f, t)
|
585 |
+
|
586 |
+
def maybe_clamp(t):
|
587 |
+
return t.clamp_min(0) if self.nonneg_sim else t
|
588 |
+
|
589 |
+
paired_sim_raw = self.sim_agg.get_pairwise_sims(preds, raw=True, agg_sim=False, agg_heads=False)
|
590 |
+
paired_sim = maybe_clamp(paired_sim_raw)
|
591 |
+
|
592 |
+
loss = 0.0
|
593 |
+
|
594 |
+
if self.nonneg_pressure:
|
595 |
+
afb, afk, afc, aff, aft = audio_feats_by_head.shape
|
596 |
+
ifb, ifk, ifc, ifh, ifw = image_feats_by_head.shape
|
597 |
+
assert (afb == ifb)
|
598 |
+
|
599 |
+
device = audio_feats_by_head.device
|
600 |
+
random_b = torch.randint(0, afb, size=(n_samples,), device=device)
|
601 |
+
random_t = torch.randint(0, aft, size=(n_samples,), device=device)
|
602 |
+
random_f = torch.randint(0, aff, size=(n_samples,), device=device)
|
603 |
+
random_h = torch.randint(0, ifh, size=(n_samples,), device=device)
|
604 |
+
random_w = torch.randint(0, ifw, size=(n_samples,), device=device)
|
605 |
+
|
606 |
+
random_audio_feats = audio_feats_by_head[random_b, :, :, random_f, random_t]
|
607 |
+
random_image_feats = image_feats_by_head[random_b, :, :, random_h, random_w]
|
608 |
+
random_sim_raw = torch.einsum("bkc,dkc->bdk", random_audio_feats, random_image_feats)
|
609 |
+
|
610 |
+
nonneg_loss = random_sim_raw.clamp_max(0).square().mean()
|
611 |
+
self.rolling_avg.add(f"loss/nonneg", nonneg_loss)
|
612 |
+
loss += nonneg_loss * self.nonneg_pressure
|
613 |
+
|
614 |
+
if self.silence_l1 > 0 or self.silence_l2 > 0:
|
615 |
+
masked_b, masked_t = torch.where(~audio_mask)
|
616 |
+
if len(masked_b) > n_samples:
|
617 |
+
subset = torch.randperm(len(masked_b))[:n_samples]
|
618 |
+
masked_b = masked_b[subset]
|
619 |
+
masked_t = masked_t[subset]
|
620 |
+
|
621 |
+
if len(masked_b) == n_samples:
|
622 |
+
silent_audio_feats = audio_feats_by_head[masked_b, :, :, :, masked_t].mean(-1) # d k c
|
623 |
+
silence_tensor = maybe_clamp(
|
624 |
+
torch.einsum("bkchw,dkc->bkdhw", image_feats_by_head, silent_audio_feats))
|
625 |
+
|
626 |
+
silence_l1_loss = silence_tensor.abs().mean()
|
627 |
+
self.rolling_avg.add(f"loss/silence_l1", silence_l1_loss)
|
628 |
+
loss += silence_l1_loss * self.silence_l1
|
629 |
+
|
630 |
+
silence_l2_loss = silence_tensor.square().mean()
|
631 |
+
self.rolling_avg.add(f"loss/silence_l2", silence_l2_loss)
|
632 |
+
loss += silence_l2_loss * self.silence_l2
|
633 |
+
else:
|
634 |
+
pass
|
635 |
+
|
636 |
+
if self.neg_audio_weight > 0 and self.neg_audio:
|
637 |
+
b, t = audio_pos_mask.shape
|
638 |
+
negative_weight = ((1 - audio_pos_mask) * audio_mask.to(sims)).reshape(b, 1, 1, 1, 1, t)
|
639 |
+
negative_weight = torch.broadcast_to(negative_weight, paired_sim.shape)
|
640 |
+
if negative_weight.sum() > 0:
|
641 |
+
neg_audio_loss = (paired_sim.square() * negative_weight).sum() \
|
642 |
+
/ negative_weight.sum().clamp_min(0.1)
|
643 |
+
self.rolling_avg.add(f"loss/neg_audio", neg_audio_loss)
|
644 |
+
self.rolling_avg.add(f"loss/neg_weight_avg", negative_weight.mean())
|
645 |
+
loss += neg_audio_loss * self.neg_audio_weight
|
646 |
+
else:
|
647 |
+
print("WARNING: No negative samples found in batch")
|
648 |
+
|
649 |
+
if self.tv_weight > 0:
|
650 |
+
tv_loss = (paired_sim[:, :, :, :, :, 1:] - paired_sim[:, :, :, :, :, :-1]).square().mean()
|
651 |
+
self.rolling_avg.add(f"loss/tv", tv_loss)
|
652 |
+
loss += tv_loss * self.tv_weight
|
653 |
+
|
654 |
+
self.log(f"cal/w", self.sim_cal.get_w())
|
655 |
+
if self.cal_balance_weight > 0.0:
|
656 |
+
cal_balance = (np.log(self.cal_init) - torch.log(self.sim_cal.get_w().clamp_min(.00000001))) \
|
657 |
+
.clamp_min(0).square().mean()
|
658 |
+
self.rolling_avg.add(f"loss/cal_balance", cal_balance)
|
659 |
+
loss += cal_balance * self.cal_balance_weight
|
660 |
+
|
661 |
+
if self.disentangle_weight > 0.0:
|
662 |
+
assert source is not None
|
663 |
+
assert self.sim_agg_heads % 2 == 0
|
664 |
+
|
665 |
+
dilation = self.sim_agg_heads // 2
|
666 |
+
sources_oh = F.one_hot(source, num_classes=2)
|
667 |
+
b, h = sources_oh.shape
|
668 |
+
sources_mask = 1 - torch.broadcast_to(sources_oh.unsqueeze(-1), (b, h, dilation)) \
|
669 |
+
.reshape(b, h * dilation).to(paired_sim)
|
670 |
+
disentangle_loss = torch.einsum("bkhwft,bk->bhwft", paired_sim, sources_mask).square().mean()
|
671 |
+
self.rolling_avg.add(f"loss/disentangle", disentangle_loss)
|
672 |
+
loss += disentangle_loss * self.disentangle_weight
|
673 |
+
|
674 |
+
if self.specialization_weight > 0.0 and self.sim_agg_heads > 1:
|
675 |
+
total_specialization_loss = 0.0
|
676 |
+
combos = list(combinations(range(self.sim_agg_heads), 2))
|
677 |
+
for i, j in combos:
|
678 |
+
specialization_loss_pair = (paired_sim[:, i].abs() * paired_sim[:, j].abs()).mean()
|
679 |
+
total_specialization_loss += specialization_loss_pair
|
680 |
+
avg_specialization_loss = total_specialization_loss / len(combos)
|
681 |
+
self.rolling_avg.add(f"loss/specialize", avg_specialization_loss)
|
682 |
+
loss += avg_specialization_loss * self.specialization_weight
|
683 |
+
|
684 |
+
if self.mixup_weight > 0.0:
|
685 |
+
b, _, h, w = image_mask.shape
|
686 |
+
neg_img_mask = torch.broadcast_to(
|
687 |
+
1 - image_mask.to(paired_sim).reshape(b, 1, h, w, 1, 1),
|
688 |
+
paired_sim.shape)
|
689 |
+
image_mixup_loss = (paired_sim * neg_img_mask).square().sum() / neg_img_mask.sum().clamp_min(0.1)
|
690 |
+
self.rolling_avg.add(f"loss/image_mixup", image_mixup_loss)
|
691 |
+
loss += image_mixup_loss * self.mixup_weight
|
692 |
+
|
693 |
+
sims = sims
|
694 |
+
loss += self.contrast_loss(sims)
|
695 |
+
self.rolling_avg.add(f"loss/total", loss)
|
696 |
+
|
697 |
+
return loss
|
698 |
+
|
699 |
+
def setup_hparams(self):
|
700 |
+
recalls = ['A_r1', 'A_r5', 'A_r10', 'I_r1', 'I_r5', 'I_r10']
|
701 |
+
|
702 |
+
if self.trainer.datamodule.use_extra_val_sets:
|
703 |
+
datasets = ["Places", "AudioSet"]
|
704 |
+
else:
|
705 |
+
datasets = ["Val"]
|
706 |
+
|
707 |
+
heads = ["total"]
|
708 |
+
|
709 |
+
metric_names = [
|
710 |
+
"hp/speech_basic_ap", "hp/speech_advanced_ap", "hp/sound_basic_ap",
|
711 |
+
"hp/speech_basic_iou", "hp/speech_advanced_iou", "hp/sound_basic_iou",
|
712 |
+
]
|
713 |
+
for dataset in datasets:
|
714 |
+
for head in heads:
|
715 |
+
for recall in recalls:
|
716 |
+
metric_names.append(f"hp/{dataset}/{head}/{recall}")
|
717 |
+
|
718 |
+
if self.sim_agg_heads == 2:
|
719 |
+
metric_names.extend(["hp/ap_dis", "hp/act_dis"])
|
720 |
+
|
721 |
+
if hasattr(self.trainer, "datamodule"):
|
722 |
+
all_hparams = {**self.hparams, **self.trainer.datamodule.hparams}
|
723 |
+
else:
|
724 |
+
all_hparams = self.hparams
|
725 |
+
|
726 |
+
starting_values = {n: torch.nan for n in metric_names}
|
727 |
+
self.logger.log_hyperparams(all_hparams, starting_values)
|
728 |
+
|
729 |
+
def on_train_start(self):
|
730 |
+
self.setup_hparams()
|
731 |
+
self.hparams_logged = True
|
732 |
+
|
733 |
+
def on_train_batch_start(self, batch, batch_idx):
|
734 |
+
remake_optimizers = False
|
735 |
+
|
736 |
+
if isinstance(self.image_aligner, ProgressiveGrowing):
|
737 |
+
should_remake = self.image_aligner.maybe_change_phase(self.global_step)
|
738 |
+
remake_optimizers = remake_optimizers or should_remake
|
739 |
+
if isinstance(self.audio_aligner, ProgressiveGrowing):
|
740 |
+
should_remake = self.audio_aligner.maybe_change_phase(self.global_step)
|
741 |
+
remake_optimizers = remake_optimizers or should_remake
|
742 |
+
|
743 |
+
if remake_optimizers:
|
744 |
+
raise NotImplementedError()
|
745 |
+
|
746 |
+
def _combine_preds(self, all_preds):
|
747 |
+
temp = {}
|
748 |
+
new_preds = {}
|
749 |
+
|
750 |
+
# Collect tensors for each key into lists
|
751 |
+
for d in all_preds:
|
752 |
+
for key, value in d.items():
|
753 |
+
if isinstance(value, torch.Tensor):
|
754 |
+
if key not in temp:
|
755 |
+
temp[key] = []
|
756 |
+
temp[key].append(value)
|
757 |
+
|
758 |
+
# Concatenate all tensors for each key using a single call to torch.cat
|
759 |
+
for key, tensor_list in temp.items():
|
760 |
+
new_preds[key] = torch.cat(tensor_list)
|
761 |
+
return new_preds
|
762 |
+
|
763 |
+
def training_step(self, batch, batch_idx):
|
764 |
+
assert batch[IMAGE_INPUT].shape[1] == 1
|
765 |
+
|
766 |
+
preds = self.forward(batch)
|
767 |
+
if DATA_SOURCE in batch:
|
768 |
+
preds[DATA_SOURCE] = batch[DATA_SOURCE]
|
769 |
+
|
770 |
+
if self.trainer.world_size > 1 and self.gather_tensors:
|
771 |
+
for k, v in preds.items():
|
772 |
+
new_v = v.contiguous()
|
773 |
+
preds[k] = torch.cat(GatherLayer.apply(new_v), dim=0)
|
774 |
+
|
775 |
+
if self.memory_buffer_size > 0:
|
776 |
+
new_preds = self._combine_preds(list(self.memory_buffer) + [preds])
|
777 |
+
else:
|
778 |
+
new_preds = preds
|
779 |
+
|
780 |
+
loss = self.loss(new_preds)
|
781 |
+
|
782 |
+
if self.memory_buffer_size > 0:
|
783 |
+
self.memory_buffer.append(self._recursive_detach(preds, gather=False))
|
784 |
+
|
785 |
+
if self.trainer.is_global_zero and self.global_step % 50 == 1:
|
786 |
+
writer = self.logger.experiment
|
787 |
+
self.rolling_avg.logall(lambda k, v: writer.add_scalar(k, v, global_step=self.global_step))
|
788 |
+
|
789 |
+
if self.trainer.scaler is not None:
|
790 |
+
self.log("loss_scale", self.trainer.scaler.get_scale())
|
791 |
+
|
792 |
+
if self.global_step % 10000 == 0 and self.global_step > 0:
|
793 |
+
print("RESETTING TFEVENT FILE")
|
794 |
+
self.logger.experiment.close()
|
795 |
+
self.logger.experiment._get_file_writer()
|
796 |
+
|
797 |
+
return loss
|
798 |
+
|
799 |
+
def on_validation_start(self) -> None:
|
800 |
+
if not self.hparams_logged:
|
801 |
+
self.setup_hparams()
|
802 |
+
self.hparams_logged = True
|
803 |
+
|
804 |
+
def _auto_gather(self, t):
|
805 |
+
if t.dtype == torch.bool:
|
806 |
+
t = t.to(torch.float)
|
807 |
+
|
808 |
+
if self.trainer.num_devices == 1:
|
809 |
+
return t.cpu()
|
810 |
+
|
811 |
+
t = torch.clone(t).contiguous()
|
812 |
+
if self.trainer.is_global_zero:
|
813 |
+
gather_list = [torch.zeros_like(t) for _ in range(dist.get_world_size())]
|
814 |
+
dist.gather(t, gather_list)
|
815 |
+
return torch.cat(gather_list, dim=0).cpu()
|
816 |
+
else:
|
817 |
+
dist.gather(t)
|
818 |
+
|
819 |
+
def validation_step(self, batch, batch_idx, dataloader_idx=0):
|
820 |
+
|
821 |
+
with torch.no_grad():
|
822 |
+
preds = self.forward(batch)
|
823 |
+
|
824 |
+
ret = {}
|
825 |
+
for k in preds.keys():
|
826 |
+
if k in preds:
|
827 |
+
ret[k] = self._auto_gather(preds[k])
|
828 |
+
|
829 |
+
batch_keys = [IMAGE_INPUT, "spec", "semseg", "num_pixels_per_class", 'total_length']
|
830 |
+
for k in batch_keys:
|
831 |
+
if k in batch:
|
832 |
+
ret[k] = self._auto_gather(batch[k])
|
833 |
+
|
834 |
+
if "metadata" in batch:
|
835 |
+
if isinstance(batch["metadata"]["id"], torch.Tensor):
|
836 |
+
ret["id"] = self._auto_gather(batch["metadata"]["id"])
|
837 |
+
ret["index"] = self._auto_gather(batch["metadata"]["index"])
|
838 |
+
|
839 |
+
return ret
|
840 |
+
|
841 |
+
def _calc_recalls(self, sim):
|
842 |
+
top_10_a = sim.topk(10, 0).indices == torch.arange(sim.shape[0]).unsqueeze(0)
|
843 |
+
top_10_i = (sim.topk(10, 1).indices == torch.arange(sim.shape[0]).unsqueeze(1)).permute(1, 0)
|
844 |
+
a_recall = lambda p: top_10_a[0:p].any(0).to(sim).mean()
|
845 |
+
i_recall = lambda p: top_10_i[0:p].any(0).to(sim).mean()
|
846 |
+
return {'A_r1': a_recall(1),
|
847 |
+
'A_r5': a_recall(5),
|
848 |
+
'A_r10': a_recall(10),
|
849 |
+
'I_r1': i_recall(1),
|
850 |
+
'I_r5': i_recall(5),
|
851 |
+
'I_r10': i_recall(10)}
|
852 |
+
|
853 |
+
def calc_recalls(self, preds, dataset):
|
854 |
+
sim = self.sim_agg.forward_batched(
|
855 |
+
preds=preds,
|
856 |
+
agg_heads=False,
|
857 |
+
batch_size=4,
|
858 |
+
).cpu()
|
859 |
+
|
860 |
+
all_metrics = dict()
|
861 |
+
for k, v in self._calc_recalls(sim.sum(-1)).items():
|
862 |
+
all_metrics[f"hp/{dataset}/total/" + k] = v
|
863 |
+
|
864 |
+
return all_metrics
|
865 |
+
|
866 |
+
def retrieval_validation(self, outputs, dataset_name):
|
867 |
+
if len(outputs) == 0:
|
868 |
+
return
|
869 |
+
|
870 |
+
if self.trainer.is_global_zero:
|
871 |
+
results = flatten_preds(outputs)
|
872 |
+
if not self.trainer.sanity_checking:
|
873 |
+
print(results[IMAGE_FEATS].shape[0])
|
874 |
+
# assert (results[IMAGE_FEATS].shape[0] == 1000)
|
875 |
+
results[IMAGE_FEATS] = results[IMAGE_FEATS].cpu()
|
876 |
+
results[AUDIO_FEATS] = results[AUDIO_FEATS].cuda()
|
877 |
+
if self.sim_use_cls:
|
878 |
+
results[AUDIO_CLS] = results[AUDIO_CLS].cuda()
|
879 |
+
results[AUDIO_CLS] = results[AUDIO_CLS].cuda()
|
880 |
+
|
881 |
+
results[AUDIO_MASK] = results[AUDIO_MASK].cuda()
|
882 |
+
|
883 |
+
recalls = self.calc_recalls(results, dataset_name)
|
884 |
+
|
885 |
+
results[IMAGE_FEATS] = results[IMAGE_FEATS].cuda()
|
886 |
+
|
887 |
+
writer = self.logger.experiment
|
888 |
+
print("here")
|
889 |
+
for name, v in recalls.items():
|
890 |
+
writer.add_scalar(f"{name}", v, self.global_step + 1)
|
891 |
+
|
892 |
+
def semseg_validation(self, speech_preds, sound_preds):
|
893 |
+
|
894 |
+
if self.trainer.is_global_zero:
|
895 |
+
from eval_utils import get_paired_heatmaps
|
896 |
+
def prep_preds(preds, loader):
|
897 |
+
results = flatten_preds(preds)
|
898 |
+
metadata = loader.dataset.metadata
|
899 |
+
ordered_metadata = metadata.iloc[results["index"].numpy(), :].copy()
|
900 |
+
ordered_metadata["order"] = range(len(ordered_metadata))
|
901 |
+
return results, ordered_metadata
|
902 |
+
|
903 |
+
[_, _, speech_loader, sound_loader] = self.trainer.val_dataloaders
|
904 |
+
speech_results, speech_metadata = prep_preds(speech_preds, speech_loader)
|
905 |
+
sound_results, sound_metadata = prep_preds(sound_preds, sound_loader)
|
906 |
+
|
907 |
+
self.sound_metrics, unique_sound_indices = get_paired_heatmaps(
|
908 |
+
self, sound_results, sound_metadata["ade_class_id"], None)
|
909 |
+
|
910 |
+
self.speech_metrics, unique_word_indices = get_paired_heatmaps(
|
911 |
+
self, speech_results, speech_metadata["ade_class_id"], speech_metadata["timing"])
|
912 |
+
|
913 |
+
writer = self.logger.experiment
|
914 |
+
|
915 |
+
all_metrics = {
|
916 |
+
**{"sound_" + k: v for k, v in self.sound_metrics.items()},
|
917 |
+
**{"speech_" + k: v for k, v in self.speech_metrics.items()},
|
918 |
+
}
|
919 |
+
|
920 |
+
for k, v in all_metrics.items():
|
921 |
+
writer.add_scalar(f"hp/{k}", torch.tensor(v).mean(), self.global_step + 1)
|
922 |
+
|
923 |
+
def disentangle_validation(self, word_preds, sound_preds):
|
924 |
+
|
925 |
+
if len(word_preds) == 0 or len(sound_preds) == 0:
|
926 |
+
return
|
927 |
+
|
928 |
+
if self.trainer.is_global_zero:
|
929 |
+
word_preds = flatten_preds(word_preds)
|
930 |
+
sound_preds = flatten_preds(sound_preds)
|
931 |
+
|
932 |
+
word_scores = self.sim_agg.get_pairwise_sims(
|
933 |
+
word_preds,
|
934 |
+
raw=False,
|
935 |
+
agg_sim=True,
|
936 |
+
agg_heads=False,
|
937 |
+
)
|
938 |
+
|
939 |
+
sound_scores = self.sim_agg.get_pairwise_sims(
|
940 |
+
sound_preds,
|
941 |
+
raw=False,
|
942 |
+
agg_sim=True,
|
943 |
+
agg_heads=False,
|
944 |
+
)
|
945 |
+
|
946 |
+
all_scores = torch.cat([word_scores, sound_scores], dim=0)
|
947 |
+
all_scores -= all_scores.min(dim=0, keepdim=True).values
|
948 |
+
all_scores /= all_scores.max(dim=0, keepdim=True).values.clamp_min(.0001)
|
949 |
+
|
950 |
+
is_words = torch.cat([
|
951 |
+
torch.ones(word_scores.shape[0]),
|
952 |
+
torch.zeros(sound_scores.shape[0])], dim=0).to(torch.bool)
|
953 |
+
|
954 |
+
assert all_scores.shape[1] == 2
|
955 |
+
ap_matrix = torch.zeros(2, 2)
|
956 |
+
act_matrix = torch.zeros(2, 2)
|
957 |
+
|
958 |
+
for head in range(2):
|
959 |
+
# writer.add_histogram(f"h{head}_all_scores", all_scores[:, head])
|
960 |
+
for dataset_num in range(2):
|
961 |
+
if dataset_num == 0:
|
962 |
+
labels = is_words
|
963 |
+
else:
|
964 |
+
labels = ~is_words
|
965 |
+
|
966 |
+
ap_matrix[head, dataset_num] = binary_average_precision(
|
967 |
+
all_scores[:, head].cpu(), labels.to(torch.int64).cpu())
|
968 |
+
|
969 |
+
act_matrix[head, dataset_num] = 1 - (all_scores[:, head][labels]).mean()
|
970 |
+
|
971 |
+
ap_dis = max(.5 * (ap_matrix[0, 0] + ap_matrix[1, 1]),
|
972 |
+
.5 * (ap_matrix[0, 1] + ap_matrix[1, 0]))
|
973 |
+
|
974 |
+
act_dis = max(.5 * (act_matrix[0, 0] + act_matrix[1, 1]),
|
975 |
+
.5 * (act_matrix[0, 1] + act_matrix[1, 0]))
|
976 |
+
|
977 |
+
print("AP", ap_matrix)
|
978 |
+
print("AP dis", ap_dis)
|
979 |
+
print("Act", act_matrix)
|
980 |
+
print("Act dis", act_dis)
|
981 |
+
|
982 |
+
writer = self.logger.experiment
|
983 |
+
writer.add_scalar("hp/ap_dis", ap_dis, self.global_step + 1)
|
984 |
+
writer.add_scalar("hp/act_dis", act_dis, self.global_step + 1)
|
985 |
+
|
986 |
+
def validation_epoch_end(self, outputs) -> None:
|
987 |
+
print("Val end")
|
988 |
+
with torch.no_grad():
|
989 |
+
if self.trainer.datamodule.use_extra_val_sets:
|
990 |
+
if self.sim_agg_heads == 2:
|
991 |
+
self.disentangle_validation(outputs[0], outputs[1])
|
992 |
+
self.retrieval_validation(outputs[0], "Places")
|
993 |
+
self.retrieval_validation(outputs[1], "AudioSet")
|
994 |
+
self.semseg_validation(outputs[2], outputs[3])
|
995 |
+
|
996 |
+
else:
|
997 |
+
print("HERE!")
|
998 |
+
self.retrieval_validation(outputs, "Val")
|
999 |
+
|
1000 |
+
writer = self.logger.experiment
|
1001 |
+
writer.flush()
|
1002 |
+
|
1003 |
+
def _recursive_detach(self, obj, gather=True):
|
1004 |
+
if isinstance(obj, torch.Tensor):
|
1005 |
+
if gather:
|
1006 |
+
return self._auto_gather(obj)
|
1007 |
+
else:
|
1008 |
+
obj.detach()
|
1009 |
+
elif isinstance(obj, dict):
|
1010 |
+
return {k: self._recursive_detach(v, gather) for k, v in obj.items()}
|
1011 |
+
elif isinstance(obj, list):
|
1012 |
+
return [self._recursive_detach(v, gather) for v in obj]
|
1013 |
+
else:
|
1014 |
+
return obj
|
1015 |
+
|
1016 |
+
def predict_step(self, batch, batch_idx: int, dataloader_idx: int = 0):
|
1017 |
+
with torch.no_grad():
|
1018 |
+
predictions = {}
|
1019 |
+
for k, v in batch.items():
|
1020 |
+
predictions[k] = self._recursive_detach(v)
|
1021 |
+
for k, v in self.forward(batch).items():
|
1022 |
+
predictions[k] = self._auto_gather(v)
|
1023 |
+
|
1024 |
+
return predictions
|
1025 |
+
|
1026 |
+
def _configure_optimizers(self, full_train, lr):
|
1027 |
+
params = [
|
1028 |
+
*self.audio_aligner.parameters(),
|
1029 |
+
*self.image_aligner.parameters(),
|
1030 |
+
*self.sim_cal.parameters(),
|
1031 |
+
*self.sim_agg.parameters()
|
1032 |
+
]
|
1033 |
+
|
1034 |
+
if (self.finetune_image_model or self.image_lora) and full_train:
|
1035 |
+
params.extend(self.image_model.parameters())
|
1036 |
+
|
1037 |
+
if (self.finetune_audio_model or self.audio_lora) and full_train:
|
1038 |
+
params.extend(self.audio_model.parameters())
|
1039 |
+
|
1040 |
+
if self.learn_audio_cls:
|
1041 |
+
params.append(self.audio_cls)
|
1042 |
+
|
1043 |
+
last_epoch = self.global_step - 1
|
1044 |
+
if self.optimizer == "adam":
|
1045 |
+
opt = torch.optim.Adam(params, lr=lr, eps=1e-7)
|
1046 |
+
elif self.optimizer == "nadam":
|
1047 |
+
opt = torch.optim.NAdam(params, lr=lr, eps=1e-7)
|
1048 |
+
else:
|
1049 |
+
raise ValueError(f"Unknown optimizer {self.optimizer}")
|
1050 |
+
|
1051 |
+
if self.lr_schedule == "sgdr":
|
1052 |
+
scheduler = CosineAnnealingWarmRestarts(
|
1053 |
+
opt, self.lr_cycle_length, 2, eta_min=lr * 2e-2, last_epoch=last_epoch)
|
1054 |
+
else:
|
1055 |
+
scheduler = LambdaLR(opt, lr_lambda=lambda step: 1.0, last_epoch=last_epoch)
|
1056 |
+
|
1057 |
+
if self.lr_warmup > 0:
|
1058 |
+
warmup = LambdaLR(
|
1059 |
+
opt,
|
1060 |
+
lr_lambda=lambda step: min(max(float(step), 0.0) / self.lr_warmup, 1.0),
|
1061 |
+
last_epoch=last_epoch,
|
1062 |
+
)
|
1063 |
+
scheduler = SequentialLR(
|
1064 |
+
opt,
|
1065 |
+
schedulers=[warmup, scheduler],
|
1066 |
+
milestones=[self.lr_warmup],
|
1067 |
+
last_epoch=last_epoch)
|
1068 |
+
|
1069 |
+
scheduler = {"scheduler": scheduler, "interval": "step"}
|
1070 |
+
|
1071 |
+
return [opt], [scheduler]
|
1072 |
+
|
1073 |
+
def configure_optimizers(self):
|
1074 |
+
if self.full_train:
|
1075 |
+
return self._configure_optimizers(self.full_train, self.lr)
|
1076 |
+
else:
|
1077 |
+
return self._configure_optimizers(self.full_train, self.pretrain_lr)
|
1078 |
+
|
1079 |
+
|
1080 |
+
@hydra.main(config_path="configs", config_name="av_align.yaml", version_base=None)
|
1081 |
+
def my_app(cfg: DictConfig) -> None:
|
1082 |
+
print(OmegaConf.to_yaml(cfg))
|
1083 |
+
seed_everything(cfg.seed, workers=True)
|
1084 |
+
|
1085 |
+
exp_name = f"{cfg.resume_prefix}"
|
1086 |
+
|
1087 |
+
if cfg.image_model_type == "dino8":
|
1088 |
+
patch_size = 8 * cfg.image_pool_width
|
1089 |
+
elif cfg.image_model_type == "cavmae":
|
1090 |
+
patch_size = 16 * cfg.image_pool_width
|
1091 |
+
elif cfg.image_model_type == "imagebind":
|
1092 |
+
patch_size = 16 * cfg.image_pool_width
|
1093 |
+
elif cfg.image_model_type == "clip":
|
1094 |
+
patch_size = 16 * cfg.image_pool_width
|
1095 |
+
elif cfg.image_model_type == "cavmae-mixed":
|
1096 |
+
patch_size = 16 * cfg.image_pool_width
|
1097 |
+
elif cfg.image_model_type == "dinov2":
|
1098 |
+
patch_size = 14 * cfg.image_pool_width
|
1099 |
+
else:
|
1100 |
+
raise ValueError(f"Unknown patch size for model {cfg.image_model_type}")
|
1101 |
+
|
1102 |
+
datamodule = AVDataModule(
|
1103 |
+
dataset_name=cfg.dataset_name,
|
1104 |
+
load_size=cfg.load_size,
|
1105 |
+
image_aug=cfg.image_aug,
|
1106 |
+
audio_aug=cfg.audio_aug,
|
1107 |
+
extra_audio_masking=cfg.extra_audio_masking,
|
1108 |
+
audio_model_type=cfg.audio_model_type,
|
1109 |
+
pytorch_data_dir=cfg.pytorch_data_dir,
|
1110 |
+
use_cached_embs=cfg.use_cached_embs,
|
1111 |
+
batch_size=cfg.batch_size,
|
1112 |
+
num_workers=cfg.num_workers,
|
1113 |
+
audio_level=cfg.audio_level,
|
1114 |
+
neg_audio=cfg.neg_audio,
|
1115 |
+
use_original_val_set=not cfg.use_extra_val_sets,
|
1116 |
+
use_extra_val_sets=cfg.use_extra_val_sets,
|
1117 |
+
data_for_plotting=False,
|
1118 |
+
quad_mixup=cfg.quad_mixup,
|
1119 |
+
bg_mixup=cfg.bg_mixup,
|
1120 |
+
patch_mixup=cfg.patch_mixup,
|
1121 |
+
patch_size=patch_size
|
1122 |
+
)
|
1123 |
+
datamodule.maybe_unpack(remove_source=cfg.submitting_to_aml)
|
1124 |
+
|
1125 |
+
aligner = create_model_from_cfg(LitAVAligner, cfg, {})
|
1126 |
+
|
1127 |
+
if cfg.starting_weights is not None:
|
1128 |
+
loaded = torch.load(join(cfg.output_root, cfg.starting_weights), map_location='cpu')
|
1129 |
+
state = loaded["state_dict"]
|
1130 |
+
aligner.load_state_dict(state, strict=cfg.load_strict)
|
1131 |
+
del state
|
1132 |
+
del loaded
|
1133 |
+
|
1134 |
+
if cfg.num_gpus > 1:
|
1135 |
+
# strategy = "ddp_sharded" # _find_unused_parameters_true"
|
1136 |
+
strategy = "ddp" # _find_unused_parameters_true"
|
1137 |
+
else:
|
1138 |
+
strategy = "auto"
|
1139 |
+
|
1140 |
+
if cfg.dataset_name in {"places-audio", "mixed", "audio-set", "mixed-full"}:
|
1141 |
+
val_args = dict(check_val_every_n_epoch=2)
|
1142 |
+
elif cfg.dataset_name in {"dolphin"}:
|
1143 |
+
val_args = dict(check_val_every_n_epoch=5)
|
1144 |
+
else:
|
1145 |
+
val_args = dict(val_check_interval=10000)
|
1146 |
+
|
1147 |
+
# val_args = dict(val_check_interval=1000)
|
1148 |
+
|
1149 |
+
def maybe_get_ckpt(ckpt_dir):
|
1150 |
+
if cfg.auto_resume and os.path.exists(ckpt_dir):
|
1151 |
+
print(f"Attempting to resume from {ckpt_dir}")
|
1152 |
+
candidates = os.listdir(ckpt_dir)
|
1153 |
+
assert (len(candidates) == 1)
|
1154 |
+
return join(ckpt_dir, candidates[0])
|
1155 |
+
elif cfg.auto_resume:
|
1156 |
+
print(f"Could not find checkpoint at {ckpt_dir}")
|
1157 |
+
return None
|
1158 |
+
else:
|
1159 |
+
return None
|
1160 |
+
|
1161 |
+
log_dir = join(cfg.output_root, "logs", cfg.grouping_name, exp_name)
|
1162 |
+
ckpt_dir = join(cfg.output_root, "checkpoints", cfg.grouping_name, exp_name)
|
1163 |
+
|
1164 |
+
import gc
|
1165 |
+
torch.cuda.empty_cache()
|
1166 |
+
gc.collect()
|
1167 |
+
|
1168 |
+
def run_exp(aligner, full_train):
|
1169 |
+
trainer_args = dict(
|
1170 |
+
accelerator='gpu',
|
1171 |
+
strategy=strategy,
|
1172 |
+
devices=cfg.num_gpus,
|
1173 |
+
num_sanity_val_steps=cfg.num_sanity_val_steps,
|
1174 |
+
log_every_n_steps=50,
|
1175 |
+
reload_dataloaders_every_n_epochs=10,
|
1176 |
+
precision="16",
|
1177 |
+
# profiler="simple",
|
1178 |
+
# precision="bf16",
|
1179 |
+
max_steps=cfg.max_steps,
|
1180 |
+
**val_args)
|
1181 |
+
|
1182 |
+
aligner.set_full_train(full_train)
|
1183 |
+
if full_train:
|
1184 |
+
suffix = "train"
|
1185 |
+
else:
|
1186 |
+
suffix = "pretrain"
|
1187 |
+
trainer_args["max_steps"] = cfg.pretrain_steps
|
1188 |
+
|
1189 |
+
print(f"Starting {suffix} phase")
|
1190 |
+
|
1191 |
+
logger = TensorBoardLogger(join(log_dir, suffix), default_hp_metric=False)
|
1192 |
+
callbacks = [
|
1193 |
+
ModelCheckpoint(join(ckpt_dir, suffix), every_n_epochs=1),
|
1194 |
+
LearningRateMonitor(logging_interval='step'),
|
1195 |
+
]
|
1196 |
+
Trainer(logger=logger,
|
1197 |
+
callbacks=callbacks,
|
1198 |
+
**trainer_args).fit(
|
1199 |
+
aligner,
|
1200 |
+
datamodule=datamodule,
|
1201 |
+
ckpt_path=maybe_get_ckpt(join(ckpt_dir, suffix)))
|
1202 |
+
|
1203 |
+
train_chkpt = maybe_get_ckpt(join(ckpt_dir, "train"))
|
1204 |
+
|
1205 |
+
gc.collect()
|
1206 |
+
if torch.cuda.is_available():
|
1207 |
+
torch.cuda.empty_cache()
|
1208 |
+
|
1209 |
+
if cfg.pretrain_steps > 0 and train_chkpt is None:
|
1210 |
+
print("---"*10)
|
1211 |
+
print("Setup with full_train = False")
|
1212 |
+
run_exp(aligner, full_train=False)
|
1213 |
+
print("---"*10)
|
1214 |
+
else:
|
1215 |
+
print("---"*10)
|
1216 |
+
print("Setup with full_train = False")
|
1217 |
+
run_exp(aligner, full_train=True)
|
1218 |
+
print("---"*10)
|
1219 |
+
|
1220 |
+
|
1221 |
+
if __name__ == "__main__":
|
1222 |
+
my_app()
|