Spaces:
Build error
Build error
| import gradio as gr | |
| from huggingface_hub import InferenceClient | |
| from transformers import AutoTokenizer | |
| from llava.model.language_model.llava_mistral import LlavaMistralForCausalLM | |
| from llava.model.builder import load_pretrained_model | |
| from llava.mm_utils import ( | |
| process_images, | |
| tokenizer_image_token, | |
| get_model_name_from_path, | |
| ) | |
| from llava.constants import ( | |
| IMAGE_TOKEN_INDEX, | |
| DEFAULT_IMAGE_TOKEN, | |
| DEFAULT_IM_START_TOKEN, | |
| DEFAULT_IM_END_TOKEN, | |
| IMAGE_PLACEHOLDER, | |
| ) | |
| from llava.conversation import conv_templates, SeparatorStyle | |
| import torch | |
| import requests | |
| from PIL import Image | |
| from io import BytesIO | |
| import re | |
| """ | |
| For more information on `huggingface_hub` Inference API support, please check the docs: https://huggingface.co/docs/huggingface_hub/v0.22.2/en/guides/inference | |
| """ | |
| client = InferenceClient("HuggingFaceH4/zephyr-7b-beta") | |
| # Functions for inference | |
| def image_parser(args): | |
| out = args.image_file.split(args.sep) | |
| return out | |
| def load_image(image_file): | |
| if image_file.startswith("http") or image_file.startswith("https"): | |
| response = requests.get(image_file) | |
| image = Image.open(BytesIO(response.content)).convert("RGB") | |
| else: | |
| image = Image.open(image_file).convert("RGB") | |
| return image | |
| def load_images(image_files): | |
| out = [] | |
| for image_file in image_files: | |
| image = load_image(image_file) | |
| out.append(image) | |
| return out | |
| model_path = "liuhaotian/llava-v1.6-mistral-7b" | |
| model_name = get_model_name_from_path(model_path) | |
| # tokenizer = AutoTokenizer.from_pretrained(model_path) | |
| # model = LlavaMistralForCausalLM.from_pretrained( | |
| # model_path, | |
| # low_cpu_mem_usage=True, | |
| # # offload_folder="/content/sample_data" | |
| # ) | |
| prompt = "What are the things I should be cautious about when I visit here?" | |
| image_file = "Great-Room-4.jpg" | |
| args = type('Args', (), { | |
| "model_path": model_path, | |
| "model_base": None, | |
| "model_name": get_model_name_from_path(model_path), | |
| "query": prompt, | |
| "conv_mode": None, | |
| "image_file": image_file, | |
| "sep": ",", | |
| "temperature": 0, | |
| "top_p": None, | |
| "num_beams": 1, | |
| "max_new_tokens": 512 | |
| })() | |
| tokenizer, model, image_processor, context_len = load_pretrained_model( | |
| model_path, None, model_name, device_map="cpu" | |
| ) | |
| qs = args.query | |
| image_token_se = DEFAULT_IM_START_TOKEN + DEFAULT_IMAGE_TOKEN + DEFAULT_IM_END_TOKEN | |
| if IMAGE_PLACEHOLDER in qs: | |
| if model.config.mm_use_im_start_end: | |
| qs = re.sub(IMAGE_PLACEHOLDER, image_token_se, qs) | |
| else: | |
| qs = re.sub(IMAGE_PLACEHOLDER, DEFAULT_IMAGE_TOKEN, qs) | |
| else: | |
| if model.config.mm_use_im_start_end: | |
| qs = image_token_se + "\n" + qs | |
| else: | |
| qs = DEFAULT_IMAGE_TOKEN + "\n" + qs | |
| if "llama-2" in model_name.lower(): | |
| conv_mode = "llava_llama_2" | |
| elif "mistral" in model_name.lower(): | |
| conv_mode = "mistral_instruct" | |
| elif "v1.6-34b" in model_name.lower(): | |
| conv_mode = "chatml_direct" | |
| elif "v1" in model_name.lower(): | |
| conv_mode = "llava_v1" | |
| elif "mpt" in model_name.lower(): | |
| conv_mode = "mpt" | |
| else: | |
| conv_mode = "llava_v0" | |
| if args.conv_mode is not None and conv_mode != args.conv_mode: | |
| print( | |
| "[WARNING] the auto inferred conversation mode is {}, while `--conv-mode` is {}, using {}".format( | |
| conv_mode, args.conv_mode, args.conv_mode | |
| ) | |
| ) | |
| else: | |
| args.conv_mode = conv_mode | |
| conv = conv_templates[args.conv_mode].copy() | |
| conv.append_message(conv.roles[0], qs) | |
| conv.append_message(conv.roles[1], None) | |
| prompt = conv.get_prompt() | |
| image_files = image_parser(args) | |
| images = load_images(image_files) | |
| image_sizes = [x.size for x in images] | |
| images_tensor = process_images( | |
| images, | |
| image_processor, | |
| model.config | |
| ).to(model.device, dtype=torch.float16) | |
| input_ids = ( | |
| tokenizer_image_token(prompt, tokenizer, IMAGE_TOKEN_INDEX, return_tensors="pt") | |
| .unsqueeze(0) | |
| # .cuda() | |
| ) | |
| with torch.inference_mode(): | |
| output_ids = model.generate( | |
| input_ids, | |
| images=images_tensor, | |
| image_sizes=image_sizes, | |
| do_sample=True if args.temperature > 0 else False, | |
| temperature=args.temperature, | |
| top_p=args.top_p, | |
| num_beams=args.num_beams, | |
| max_new_tokens=args.max_new_tokens, | |
| use_cache=True, | |
| ) | |
| outputs = tokenizer.batch_decode(output_ids, skip_special_tokens=True)[0].strip() | |
| print(outputs) | |
| # End Llava inference | |
| def respond( | |
| message, | |
| history: list[tuple[str, str]], | |
| system_message, | |
| max_tokens, | |
| temperature, | |
| top_p, | |
| ): | |
| messages = [{"role": "system", "content": system_message}] | |
| for val in history: | |
| if val[0]: | |
| messages.append({"role": "user", "content": val[0]}) | |
| if val[1]: | |
| messages.append({"role": "assistant", "content": val[1]}) | |
| messages.append({"role": "user", "content": message}) | |
| response = "" | |
| for message in client.chat_completion( | |
| messages, | |
| max_tokens=max_tokens, | |
| stream=True, | |
| temperature=temperature, | |
| top_p=top_p, | |
| ): | |
| token = message.choices[0].delta.content | |
| response += token | |
| yield response | |
| """ | |
| For information on how to customize the ChatInterface, peruse the gradio docs: https://www.gradio.app/docs/chatinterface | |
| """ | |
| demo = gr.ChatInterface( | |
| respond, | |
| additional_inputs=[ | |
| gr.Textbox(value="You are a friendly Chatbot.", label="System message"), | |
| gr.Slider(minimum=1, maximum=2048, value=512, step=1, label="Max new tokens"), | |
| gr.Slider(minimum=0.1, maximum=4.0, value=0.7, step=0.1, label="Temperature"), | |
| gr.Slider( | |
| minimum=0.1, | |
| maximum=1.0, | |
| value=0.95, | |
| step=0.05, | |
| label="Top-p (nucleus sampling)", | |
| ), | |
| ], | |
| ) | |
| if __name__ == "__main__": | |
| demo.launch() | |