File size: 13,428 Bytes
10e9b7d
 
eccf8e4
7d65c66
6140977
a4240ad
6140977
 
c8febd3
a4240ad
17641af
 
 
 
bdc1e93
c8febd3
 
3c4371f
fb35c19
10e9b7d
a4240ad
 
d59f015
e80aab9
3db6293
e80aab9
31243f4
d59f015
31243f4
 
260122f
 
c8febd3
3902f7e
cfaacf9
3cf70e0
 
 
cfaacf9
3cf70e0
17641af
3cf70e0
17641af
26e5222
3cf70e0
 
17641af
cfaacf9
 
 
3902f7e
17641af
 
cfaacf9
26e5222
 
 
 
cfaacf9
 
26e5222
 
 
 
 
 
 
 
6140977
 
 
26e5222
 
 
 
c8febd3
 
 
 
 
 
 
 
b539f05
c8febd3
a4240ad
6140977
11beb43
6140977
17641af
6140977
 
 
26e5222
11beb43
 
a4240ad
 
11beb43
 
 
 
 
fb35c19
cfaacf9
260122f
 
 
 
 
 
 
fb35c19
260122f
a4240ad
c8febd3
 
 
4021bf3
260122f
31243f4
 
 
 
7d65c66
b177367
3c4371f
7e4a06b
1ca9f65
3c4371f
7e4a06b
3c4371f
7d65c66
3c4371f
7e4a06b
31243f4
 
6140977
e80aab9
b177367
31243f4
 
 
3c4371f
31243f4
b177367
36ed51a
c1fd3d2
3c4371f
7d65c66
31243f4
eccf8e4
a276d30
7d65c66
31243f4
 
3c4371f
 
31243f4
e80aab9
31243f4
 
3c4371f
 
7d65c66
3c4371f
7d65c66
31243f4
 
e80aab9
b177367
7d65c66
 
3c4371f
31243f4
3902f7e
31243f4
 
 
 
 
 
6140977
 
 
 
 
 
 
 
 
 
 
 
 
7d65c66
 
31243f4
 
7d65c66
31243f4
 
3c4371f
31243f4
 
b177367
7d65c66
3c4371f
31243f4
e80aab9
7d65c66
31243f4
e80aab9
7d65c66
e80aab9
 
31243f4
e80aab9
 
3c4371f
 
 
e80aab9
 
31243f4
 
e80aab9
3c4371f
e80aab9
 
3c4371f
e80aab9
7d65c66
3c4371f
31243f4
7d65c66
31243f4
3c4371f
 
 
 
 
e80aab9
31243f4
 
 
 
7d65c66
31243f4
 
 
 
e80aab9
 
 
 
31243f4
0ee0419
e514fd7
 
 
81917a3
e514fd7
 
 
 
 
 
 
 
e80aab9
 
7e4a06b
e80aab9
31243f4
e80aab9
9088b99
7d65c66
 
e80aab9
31243f4
 
 
e80aab9
 
 
3c4371f
7d65c66
3c4371f
7d65c66
 
3c4371f
 
7d65c66
3c4371f
7d65c66
 
 
 
 
 
 
 
 
3c4371f
 
31243f4
3c4371f
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
import os
import gradio as gr
import requests
import inspect
import base64
import nest_asyncio
from llama_index.core import SummaryIndex
from llama_index.readers.web import SimpleWebPageReader
from llama_index.llms.ollama import Ollama
from llama_index.tools.wikipedia import WikipediaToolSpec
from llama_index.readers.youtube_transcript import YoutubeTranscriptReader
from llama_index.core.tools import FunctionTool
from llama_index.tools.duckduckgo import DuckDuckGoSearchToolSpec
from llama_index.core.agent.workflow import AgentWorkflow
from llama_index.llms.gemini import Gemini
from llama_index.core.schema import Document
from llama_index.core import get_response_synthesizer
import pandas as pd
import asyncio

nest_asyncio.apply()

# (Keep Constants as is)
# --- Constants ---
DEFAULT_API_URL = "https://agents-course-unit4-scoring.hf.space"

# --- Basic Agent Definition ---
# ----- THIS IS WERE YOU CAN BUILD WHAT YOU WANT ------
class BasicAgent:
    def __init__(self):
        # TODO inspect messages exchanged between the llm and the agent

        # self.llm = Ollama(model="qwen2.5:7b", request_timeout=500)
        self.llm = Gemini(model_name="models/gemini-2.0-flash")
        def load_video_transcript(video_link: str) -> str:
            try:
                loader = YoutubeTranscriptReader()
                documents = loader.load_data(
                    ytlinks=[video_link]
                )

                text = documents[0].text_resource.text

                return { "video_transcript": text }
            except Exception as e:
                print("error", e)

        load_video_transcript_tool = FunctionTool.from_defaults(
            load_video_transcript,
            name="load_video_transcript",
            description="Loads transcript of the given video using the link. If some calls fail, we can still keep using this tool for others.",
        )

        def web_page_reader(url: str) -> str:
            try:
                documents = SimpleWebPageReader(html_to_text=True).load_data(
                    [url]
                )
                
                return { "web_page_read_reasult": "\n".join([doc.text for doc in documents]) }
            except Exception as e:
                print("error in webpage", e)

        web_page_reader_tool = FunctionTool.from_defaults(
            web_page_reader,
            name="web_page_reader",
            description="Visits the wepage on given url and returns response on the passed query"
        )

        def duck_duck_go_search_tool(query: str) -> str:
            try:
                raw_results = DuckDuckGoSearchToolSpec().duckduckgo_full_search(query, max_results=5)
                texts = [res['body'] for res in raw_results]
                full_text = "\n".join(texts)
                return { "web_search_results": full_text }

            except Exception as e:
                return f"An error occurred: {e}"


        duckduckgo_search_tool = FunctionTool.from_defaults(
                duck_duck_go_search_tool,
                name="duck_duck_go_search_tool",
                description="Searches the web and refines the result into a high-quality answer. Use when other tools don't seem suitable"
            )
        
        def wikipedia_search(page_title: str, query: str) -> str:
            try:
                text = WikipediaToolSpec().load_data(page=page_title)

                if text == "":
                    text = WikipediaToolSpec().search_data(query)
                    
                return { "wiki_search_results": text }
            except Exception as e:
                return f"An error occurred: {e}"


        wikipedia_search_tool = FunctionTool.from_defaults(
                wikipedia_search,
                name="wikipedia_search",
                description="Searches wikipedia and converts results into a high quality answer."
            )

        self.agent = AgentWorkflow.from_tools_or_functions([duckduckgo_search_tool, load_video_transcript_tool, wikipedia_search_tool, web_page_reader_tool], llm=self.llm, system_prompt="You're an ai agent designed for question answering. Keep your answers concise or even one word when possible. You have access to a bunch of tools, utilise them well to reach answers.")
        print("BasicAgent initialized.")

    async def run_agent(self, question: str):
        return await self.agent.run(question)
    
    def __call__(self, question: str) -> str:
        print(f"Agent received question (first 50 chars): {question[:50]}...")
        
        response = asyncio.run(self.run_agent(question=question))

        final_answer = response.response.blocks[0].text
        print(f"Agent returning fixed answer: {final_answer}")
        return final_answer

async def run_and_submit_all( profile: gr.OAuthProfile | None):
    """
    Fetches all questions, runs the BasicAgent on them, submits all answers,
    and displays the results.
    """
    # --- Determine HF Space Runtime URL and Repo URL ---
    space_id = os.getenv("SPACE_ID") # Get the SPACE_ID for sending link to the code

    if profile:
        username= f"{profile.username}"
        print(f"User logged in: {username}")
    else:
        print("User not logged in.")
        return "Please Login to Hugging Face with the button.", None

    api_url = DEFAULT_API_URL
    questions_url = f"{api_url}/questions"
    submit_url = f"{api_url}/submit"
    files_url = f"{api_url}/files/"

    # 1. Instantiate Agent ( modify this part to create your agent)
    try:
        agent = BasicAgent()
    except Exception as e:
        print(f"Error instantiating agent: {e}")
        return f"Error initializing agent: {e}", None
    # In the case of an app running as a hugging Face space, this link points toward your codebase ( usefull for others so please keep it public)
    agent_code = f"https://huggingface.co/spaces/{space_id}/tree/main"
    print(agent_code)

    # 2. Fetch Questions
    print(f"Fetching questions from: {questions_url}")
    try:
        response = requests.get(questions_url, timeout=30)
        response.raise_for_status()
        questions_data = response.json()
        if not questions_data:
             print("Fetched questions list is empty.")
             return "Fetched questions list is empty or invalid format.", None
        print(f"Fetched {len(questions_data)} questions.")
    except requests.exceptions.RequestException as e:
        print(f"Error fetching questions: {e}")
        return f"Error fetching questions: {e}", None
    except requests.exceptions.JSONDecodeError as e:
         print(f"Error decoding JSON response from questions endpoint: {e}")
         print(f"Response text: {response.text[:500]}")
         return f"Error decoding server response for questions: {e}", None
    except Exception as e:
        print(f"An unexpected error occurred fetching questions: {e}")
        return f"An unexpected error occurred fetching questions: {e}", None

    # 3. Run your Agent
    results_log = []
    answers_payload = []
    print(f"Running agent on {len(questions_data)} questions...")
    for item in questions_data:
        await asyncio.sleep(20)
        task_id = item.get("task_id")
        question_text = item.get("question")
        if not task_id or question_text is None:
            print(f"Skipping item with missing task_id or question: {item}")
            continue
        try:
            encoded = None
            if item.get("file_name") != "":
                response = requests.get(files_url + task_id)
                response.raise_for_status()

                data = response.content

                encoded = base64.b64encode(data).decode('utf-8')
            
            if encoded is not None:
                submitted_answer = agent(question_text + "\nfile_data: " + encoded)
            else:
                submitted_answer = agent(question_text)
            answers_payload.append({"task_id": task_id, "submitted_answer": submitted_answer})
            results_log.append({"Task ID": task_id, "Question": question_text, "Submitted Answer": submitted_answer})
        except Exception as e:
             print(f"Error running agent on task {task_id}: {e}")
             results_log.append({"Task ID": task_id, "Question": question_text, "Submitted Answer": f"AGENT ERROR: {e}"})

    if not answers_payload:
        print("Agent did not produce any answers to submit.")
        return "Agent did not produce any answers to submit.", pd.DataFrame(results_log)

    # 4. Prepare Submission 
    submission_data = {"username": username.strip(), "agent_code": agent_code, "answers": answers_payload}
    status_update = f"Agent finished. Submitting {len(answers_payload)} answers for user '{username}'..."
    print(status_update)

    # 5. Submit
    print(f"Submitting {len(answers_payload)} answers to: {submit_url}")
    try:
        response = requests.post(submit_url, json=submission_data, timeout=60)
        response.raise_for_status()
        result_data = response.json()
        final_status = (
            f"Submission Successful!\n"
            f"User: {result_data.get('username')}\n"
            f"Overall Score: {result_data.get('score', 'N/A')}% "
            f"({result_data.get('correct_count', '?')}/{result_data.get('total_attempted', '?')} correct)\n"
            f"Message: {result_data.get('message', 'No message received.')}"
        )
        print("Submission successful.")
        results_df = pd.DataFrame(results_log)
        return final_status, results_df
    except requests.exceptions.HTTPError as e:
        error_detail = f"Server responded with status {e.response.status_code}."
        try:
            error_json = e.response.json()
            error_detail += f" Detail: {error_json.get('detail', e.response.text)}"
        except requests.exceptions.JSONDecodeError:
            error_detail += f" Response: {e.response.text[:500]}"
        status_message = f"Submission Failed: {error_detail}"
        print(status_message)
        results_df = pd.DataFrame(results_log)
        return status_message, results_df
    except requests.exceptions.Timeout:
        status_message = "Submission Failed: The request timed out."
        print(status_message)
        results_df = pd.DataFrame(results_log)
        return status_message, results_df
    except requests.exceptions.RequestException as e:
        status_message = f"Submission Failed: Network error - {e}"
        print(status_message)
        results_df = pd.DataFrame(results_log)
        return status_message, results_df
    except Exception as e:
        status_message = f"An unexpected error occurred during submission: {e}"
        print(status_message)
        results_df = pd.DataFrame(results_log)
        return status_message, results_df


# --- Build Gradio Interface using Blocks ---
with gr.Blocks() as demo:
    gr.Markdown("# Basic Agent Evaluation Runner")
    gr.Markdown(
        """
        **Instructions:**

        1.  Please clone this space, then modify the code to define your agent's logic, the tools, the necessary packages, etc ...
        2.  Log in to your Hugging Face account using the button below. This uses your HF username for submission.
        3.  Click 'Run Evaluation & Submit All Answers' to fetch questions, run your agent, submit answers, and see the score.

        ---
        **Disclaimers:**
        Once clicking on the "submit button, it can take quite some time ( this is the time for the agent to go through all the questions).
        This space provides a basic setup and is intentionally sub-optimal to encourage you to develop your own, more robust solution. For instance for the delay process of the submit button, a solution could be to cache the answers and submit in a seperate action or even to answer the questions in async.
        """
    )

    gr.LoginButton()

    run_button = gr.Button("Run Evaluation & Submit All Answers")

    status_output = gr.Textbox(label="Run Status / Submission Result", lines=5, interactive=False)
    # Removed max_rows=10 from DataFrame constructor
    results_table = gr.DataFrame(label="Questions and Agent Answers", wrap=True)

    run_button.click(
        fn=run_and_submit_all,
        outputs=[status_output, results_table]
    )

if __name__ == "__main__":
    print("\n" + "-"*30 + " App Starting " + "-"*30)
    # Check for SPACE_HOST and SPACE_ID at startup for information
    space_host_startup = os.getenv("SPACE_HOST")
    space_id_startup = os.getenv("SPACE_ID") # Get SPACE_ID at startup

    if space_host_startup:
        print(f"✅ SPACE_HOST found: {space_host_startup}")
        print(f"   Runtime URL should be: https://{space_host_startup}.hf.space")
    else:
        print("ℹ️  SPACE_HOST environment variable not found (running locally?).")

    if space_id_startup: # Print repo URLs if SPACE_ID is found
        print(f"✅ SPACE_ID found: {space_id_startup}")
        print(f"   Repo URL: https://huggingface.co/spaces/{space_id_startup}")
        print(f"   Repo Tree URL: https://huggingface.co/spaces/{space_id_startup}/tree/main")
    else:
        print("ℹ️  SPACE_ID environment variable not found (running locally?). Repo URL cannot be determined.")

    print("-"*(60 + len(" App Starting ")) + "\n")

    print("Launching Gradio Interface for Basic Agent Evaluation...")
    demo.launch(debug=True, share=False)