import os import gradio as gr import requests import inspect import base64 import nest_asyncio from llama_index.core import SummaryIndex from llama_index.readers.web import SimpleWebPageReader from llama_index.llms.ollama import Ollama from llama_index.tools.wikipedia import WikipediaToolSpec from llama_index.readers.youtube_transcript import YoutubeTranscriptReader from llama_index.core.tools import FunctionTool from llama_index.tools.duckduckgo import DuckDuckGoSearchToolSpec from llama_index.core.agent.workflow import AgentWorkflow from llama_index.llms.gemini import Gemini from llama_index.core.schema import Document from llama_index.core import get_response_synthesizer import pandas as pd import asyncio nest_asyncio.apply() # (Keep Constants as is) # --- Constants --- DEFAULT_API_URL = "https://agents-course-unit4-scoring.hf.space" # --- Basic Agent Definition --- # ----- THIS IS WERE YOU CAN BUILD WHAT YOU WANT ------ class BasicAgent: def __init__(self): # TODO inspect messages exchanged between the llm and the agent # self.llm = Ollama(model="qwen2.5:7b", request_timeout=500) self.llm = Gemini(model_name="models/gemini-2.0-flash") def load_video_transcript(video_link: str) -> str: try: loader = YoutubeTranscriptReader() documents = loader.load_data( ytlinks=[video_link] ) text = documents[0].text_resource.text return { "video_transcript": text } except Exception as e: print("error", e) load_video_transcript_tool = FunctionTool.from_defaults( load_video_transcript, name="load_video_transcript", description="Loads transcript of the given video using the link. If some calls fail, we can still keep using this tool for others.", ) def web_page_reader(url: str) -> str: try: documents = SimpleWebPageReader(html_to_text=True).load_data( [url] ) return { "web_page_read_reasult": "\n".join([doc.text for doc in documents]) } except Exception as e: print("error in webpage", e) web_page_reader_tool = FunctionTool.from_defaults( web_page_reader, name="web_page_reader", description="Visits the wepage on given url and returns response on the passed query" ) def duck_duck_go_search_tool(query: str) -> str: try: raw_results = DuckDuckGoSearchToolSpec().duckduckgo_full_search(query, max_results=5) texts = [res['body'] for res in raw_results] full_text = "\n".join(texts) return { "web_search_results": full_text } except Exception as e: return f"An error occurred: {e}" duckduckgo_search_tool = FunctionTool.from_defaults( duck_duck_go_search_tool, name="duck_duck_go_search_tool", description="Searches the web and refines the result into a high-quality answer. Use when other tools don't seem suitable" ) def wikipedia_search(page_title: str, query: str) -> str: try: text = WikipediaToolSpec().load_data(page=page_title) if text == "": text = WikipediaToolSpec().search_data(query) return { "wiki_search_results": text } except Exception as e: return f"An error occurred: {e}" wikipedia_search_tool = FunctionTool.from_defaults( wikipedia_search, name="wikipedia_search", description="Searches wikipedia and converts results into a high quality answer." ) self.agent = AgentWorkflow.from_tools_or_functions([duckduckgo_search_tool, load_video_transcript_tool, wikipedia_search_tool, web_page_reader_tool], llm=self.llm, system_prompt="You're an ai agent designed for question answering. Keep your answers concise or even one word when possible. You have access to a bunch of tools, utilise them well to reach answers.") print("BasicAgent initialized.") async def run_agent(self, question: str): return await self.agent.run(question) def __call__(self, question: str) -> str: print(f"Agent received question (first 50 chars): {question[:50]}...") response = asyncio.run(self.run_agent(question=question)) final_answer = response.response.blocks[0].text print(f"Agent returning fixed answer: {final_answer}") return final_answer async def run_and_submit_all( profile: gr.OAuthProfile | None): """ Fetches all questions, runs the BasicAgent on them, submits all answers, and displays the results. """ # --- Determine HF Space Runtime URL and Repo URL --- space_id = os.getenv("SPACE_ID") # Get the SPACE_ID for sending link to the code if profile: username= f"{profile.username}" print(f"User logged in: {username}") else: print("User not logged in.") return "Please Login to Hugging Face with the button.", None api_url = DEFAULT_API_URL questions_url = f"{api_url}/questions" submit_url = f"{api_url}/submit" files_url = f"{api_url}/files/" # 1. Instantiate Agent ( modify this part to create your agent) try: agent = BasicAgent() except Exception as e: print(f"Error instantiating agent: {e}") return f"Error initializing agent: {e}", None # In the case of an app running as a hugging Face space, this link points toward your codebase ( usefull for others so please keep it public) agent_code = f"https://huggingface.co/spaces/{space_id}/tree/main" print(agent_code) # 2. Fetch Questions print(f"Fetching questions from: {questions_url}") try: response = requests.get(questions_url, timeout=30) response.raise_for_status() questions_data = response.json() if not questions_data: print("Fetched questions list is empty.") return "Fetched questions list is empty or invalid format.", None print(f"Fetched {len(questions_data)} questions.") except requests.exceptions.RequestException as e: print(f"Error fetching questions: {e}") return f"Error fetching questions: {e}", None except requests.exceptions.JSONDecodeError as e: print(f"Error decoding JSON response from questions endpoint: {e}") print(f"Response text: {response.text[:500]}") return f"Error decoding server response for questions: {e}", None except Exception as e: print(f"An unexpected error occurred fetching questions: {e}") return f"An unexpected error occurred fetching questions: {e}", None # 3. Run your Agent results_log = [] answers_payload = [] print(f"Running agent on {len(questions_data)} questions...") for item in questions_data: await asyncio.sleep(20) task_id = item.get("task_id") question_text = item.get("question") if not task_id or question_text is None: print(f"Skipping item with missing task_id or question: {item}") continue try: encoded = None if item.get("file_name") != "": response = requests.get(files_url + task_id) response.raise_for_status() data = response.content encoded = base64.b64encode(data).decode('utf-8') if encoded is not None: submitted_answer = agent(question_text + "\nfile_data: " + encoded) else: submitted_answer = agent(question_text) answers_payload.append({"task_id": task_id, "submitted_answer": submitted_answer}) results_log.append({"Task ID": task_id, "Question": question_text, "Submitted Answer": submitted_answer}) except Exception as e: print(f"Error running agent on task {task_id}: {e}") results_log.append({"Task ID": task_id, "Question": question_text, "Submitted Answer": f"AGENT ERROR: {e}"}) if not answers_payload: print("Agent did not produce any answers to submit.") return "Agent did not produce any answers to submit.", pd.DataFrame(results_log) # 4. Prepare Submission submission_data = {"username": username.strip(), "agent_code": agent_code, "answers": answers_payload} status_update = f"Agent finished. Submitting {len(answers_payload)} answers for user '{username}'..." print(status_update) # 5. Submit print(f"Submitting {len(answers_payload)} answers to: {submit_url}") try: response = requests.post(submit_url, json=submission_data, timeout=60) response.raise_for_status() result_data = response.json() final_status = ( f"Submission Successful!\n" f"User: {result_data.get('username')}\n" f"Overall Score: {result_data.get('score', 'N/A')}% " f"({result_data.get('correct_count', '?')}/{result_data.get('total_attempted', '?')} correct)\n" f"Message: {result_data.get('message', 'No message received.')}" ) print("Submission successful.") results_df = pd.DataFrame(results_log) return final_status, results_df except requests.exceptions.HTTPError as e: error_detail = f"Server responded with status {e.response.status_code}." try: error_json = e.response.json() error_detail += f" Detail: {error_json.get('detail', e.response.text)}" except requests.exceptions.JSONDecodeError: error_detail += f" Response: {e.response.text[:500]}" status_message = f"Submission Failed: {error_detail}" print(status_message) results_df = pd.DataFrame(results_log) return status_message, results_df except requests.exceptions.Timeout: status_message = "Submission Failed: The request timed out." print(status_message) results_df = pd.DataFrame(results_log) return status_message, results_df except requests.exceptions.RequestException as e: status_message = f"Submission Failed: Network error - {e}" print(status_message) results_df = pd.DataFrame(results_log) return status_message, results_df except Exception as e: status_message = f"An unexpected error occurred during submission: {e}" print(status_message) results_df = pd.DataFrame(results_log) return status_message, results_df # --- Build Gradio Interface using Blocks --- with gr.Blocks() as demo: gr.Markdown("# Basic Agent Evaluation Runner") gr.Markdown( """ **Instructions:** 1. Please clone this space, then modify the code to define your agent's logic, the tools, the necessary packages, etc ... 2. Log in to your Hugging Face account using the button below. This uses your HF username for submission. 3. Click 'Run Evaluation & Submit All Answers' to fetch questions, run your agent, submit answers, and see the score. --- **Disclaimers:** Once clicking on the "submit button, it can take quite some time ( this is the time for the agent to go through all the questions). This space provides a basic setup and is intentionally sub-optimal to encourage you to develop your own, more robust solution. For instance for the delay process of the submit button, a solution could be to cache the answers and submit in a seperate action or even to answer the questions in async. """ ) gr.LoginButton() run_button = gr.Button("Run Evaluation & Submit All Answers") status_output = gr.Textbox(label="Run Status / Submission Result", lines=5, interactive=False) # Removed max_rows=10 from DataFrame constructor results_table = gr.DataFrame(label="Questions and Agent Answers", wrap=True) run_button.click( fn=run_and_submit_all, outputs=[status_output, results_table] ) if __name__ == "__main__": print("\n" + "-"*30 + " App Starting " + "-"*30) # Check for SPACE_HOST and SPACE_ID at startup for information space_host_startup = os.getenv("SPACE_HOST") space_id_startup = os.getenv("SPACE_ID") # Get SPACE_ID at startup if space_host_startup: print(f"✅ SPACE_HOST found: {space_host_startup}") print(f" Runtime URL should be: https://{space_host_startup}.hf.space") else: print("ℹ️ SPACE_HOST environment variable not found (running locally?).") if space_id_startup: # Print repo URLs if SPACE_ID is found print(f"✅ SPACE_ID found: {space_id_startup}") print(f" Repo URL: https://huggingface.co/spaces/{space_id_startup}") print(f" Repo Tree URL: https://huggingface.co/spaces/{space_id_startup}/tree/main") else: print("ℹ️ SPACE_ID environment variable not found (running locally?). Repo URL cannot be determined.") print("-"*(60 + len(" App Starting ")) + "\n") print("Launching Gradio Interface for Basic Agent Evaluation...") demo.launch(debug=True, share=False)