Spaces:
Running
Running
Delete app_grid.py
Browse files- app_grid.py +0 -88
app_grid.py
DELETED
@@ -1,88 +0,0 @@
|
|
1 |
-
import random
|
2 |
-
|
3 |
-
import gradio as gr
|
4 |
-
from datasets import load_dataset
|
5 |
-
|
6 |
-
whoops = load_dataset("nlphuji/whoops")['test']
|
7 |
-
whoops = whoops.shuffle()
|
8 |
-
|
9 |
-
print(f"Loaded WMTIS, first example:")
|
10 |
-
print(whoops[0])
|
11 |
-
dataset_size = len(whoops)
|
12 |
-
print(f"dataset_size: {dataset_size}")
|
13 |
-
|
14 |
-
IMAGE = 'image'
|
15 |
-
IMAGE_DESIGNER = 'image_designer'
|
16 |
-
DESIGNER_EXPLANATION = 'designer_explanation'
|
17 |
-
CROWD_CAPTIONS = 'crowd_captions'
|
18 |
-
CROWD_EXPLANATIONS = 'crowd_explanations'
|
19 |
-
CROWD_UNDERSPECIFIED_CAPTIONS = 'crowd_underspecified_captions'
|
20 |
-
SELECTED_CAPTION = 'selected_caption'
|
21 |
-
COMMONSENSE_CATEGORY = 'commonsense_category'
|
22 |
-
QA = 'question_answering_pairs'
|
23 |
-
IMAGE_ID = 'image_id'
|
24 |
-
left_side_columns = [IMAGE]
|
25 |
-
right_side_columns = [x for x in whoops.features.keys() if x not in left_side_columns and x not in [QA]]
|
26 |
-
enumerate_cols = [CROWD_CAPTIONS, CROWD_EXPLANATIONS, CROWD_UNDERSPECIFIED_CAPTIONS]
|
27 |
-
emoji_to_label = {IMAGE_DESIGNER: 'π¨, π§βπ¨, π»', DESIGNER_EXPLANATION: 'π‘, π€, π§βπ¨',
|
28 |
-
CROWD_CAPTIONS: 'π₯, π¬, π', CROWD_EXPLANATIONS: 'π₯, π‘, π€', CROWD_UNDERSPECIFIED_CAPTIONS: 'π₯, π¬, π',
|
29 |
-
QA: 'β, π€, π‘', IMAGE_ID: 'π, π, πΎ', COMMONSENSE_CATEGORY: 'π€, π, π‘', SELECTED_CAPTION: 'π, π, π¬'}
|
30 |
-
target_size = (1024, 1024)
|
31 |
-
|
32 |
-
columns_number = 3
|
33 |
-
rows_number = 10
|
34 |
-
|
35 |
-
def func(index):
|
36 |
-
example = whoops[index]
|
37 |
-
values = get_instance_values(example)
|
38 |
-
return values
|
39 |
-
|
40 |
-
|
41 |
-
def get_instance_values(example):
|
42 |
-
values = []
|
43 |
-
for k in left_side_columns + right_side_columns:
|
44 |
-
if k in enumerate_cols:
|
45 |
-
value = list_to_string(example[k])
|
46 |
-
elif k == QA:
|
47 |
-
qa_list = [f"Q: {x[0]} A: {x[1]}" for x in example[k]]
|
48 |
-
value = list_to_string(qa_list)
|
49 |
-
else:
|
50 |
-
value = example[k]
|
51 |
-
values.append(value)
|
52 |
-
return values
|
53 |
-
|
54 |
-
|
55 |
-
def list_to_string(lst):
|
56 |
-
return '\n'.join(['{}. {}'.format(i + 1, item) for i, item in enumerate(lst)])
|
57 |
-
|
58 |
-
def create_image_accordion_block(index):
|
59 |
-
example = whoops[index]
|
60 |
-
instance_values = get_instance_values(example)
|
61 |
-
assert len(left_side_columns) == len(
|
62 |
-
instance_values[:len(left_side_columns)]) # excluding the image & designer
|
63 |
-
for key, value in zip(left_side_columns, instance_values[:len(left_side_columns)]):
|
64 |
-
if key == IMAGE:
|
65 |
-
img = whoops[index]["image"]
|
66 |
-
img_resized = img.resize(target_size)
|
67 |
-
gr.Image(value=img_resized, label=whoops[index]['commonsense_category'])
|
68 |
-
else:
|
69 |
-
label = key.capitalize().replace("_", " ")
|
70 |
-
gr.Textbox(value=value, label=f"{label} {emoji_to_label[key]}")
|
71 |
-
with gr.Accordion("Click for details", open=False):
|
72 |
-
assert len(right_side_columns) == len(
|
73 |
-
instance_values[len(left_side_columns):]) # excluding the image & designer
|
74 |
-
for key, value in zip(right_side_columns, instance_values[len(left_side_columns):]):
|
75 |
-
label = key.capitalize().replace("_", " ")
|
76 |
-
gr.Textbox(value=value, label=f"{label} {emoji_to_label[key]}")
|
77 |
-
|
78 |
-
|
79 |
-
|
80 |
-
with gr.Blocks() as demo:
|
81 |
-
gr.Markdown(f"# Slide to iterate WHOOPS!")
|
82 |
-
for row_num in range(0, rows_number):
|
83 |
-
with gr.Row():
|
84 |
-
for col_num in range(0, columns_number):
|
85 |
-
with gr.Column():
|
86 |
-
index = random.choice(range(0, dataset_size))
|
87 |
-
create_image_accordion_block(index)
|
88 |
-
demo.launch()
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|