Spaces:
Running
Running
import streamlit as st | |
from PyPDF2 import PdfReader | |
from langchain.text_splitter import RecursiveCharacterTextSplitter | |
import os | |
from langchain_community.embeddings import HuggingFaceEmbeddings # Using Hugging Face embeddings | |
from langchain.vectorstores import FAISS | |
from langchain_groq import ChatGroq | |
from langchain.chains.question_answering import load_qa_chain | |
from langchain.prompts import PromptTemplate | |
from dotenv import load_dotenv | |
import re | |
# Load environment variables | |
load_dotenv() | |
os.getenv("GROQ_API_KEY") | |
def get_pdf_text(pdf_docs): | |
"""Extracts text from uploaded PDF files.""" | |
text = "" | |
for pdf in pdf_docs: | |
pdf_reader = PdfReader(pdf) | |
for page in pdf_reader.pages: | |
text += page.extract_text() | |
return text | |
def get_text_chunks(text): | |
"""Splits extracted text into manageable chunks.""" | |
text_splitter = RecursiveCharacterTextSplitter(chunk_size=10000, chunk_overlap=1000) | |
chunks = text_splitter.split_text(text) | |
return chunks | |
def get_vector_store(text_chunks): | |
"""Creates and saves a FAISS vector store from text chunks.""" | |
embeddings = HuggingFaceEmbeddings(model_name="sentence-transformers/all-MiniLM-L6-v2") # Using Hugging Face embeddings | |
vector_store = FAISS.from_texts(text_chunks, embedding=embeddings) | |
vector_store.save_local("faiss_index") | |
def get_conversational_chain(): | |
"""Sets up a conversational chain using Groq LLM.""" | |
prompt_template = """ | |
Answer the question as detailed as possible from the provided context. If the answer is not in | |
the provided context, just say, "answer is not available in the context." Do not provide incorrect answers. | |
Context: | |
{context}? | |
Question: | |
{question} | |
Answer: | |
""" | |
model = ChatGroq( | |
temperature=0.3, | |
model_name="deepseek-r1-distill-llama-70b", # Using Mixtral model through Groq | |
groq_api_key=os.getenv("GROQ_API_KEY") | |
) | |
prompt = PromptTemplate(template=prompt_template, input_variables=["context", "question"]) | |
chain = load_qa_chain(model, chain_type="stuff", prompt=prompt) | |
return chain | |
def user_input(user_question): | |
"""Handles user queries by retrieving answers from the vector store.""" | |
embeddings = HuggingFaceEmbeddings(model_name="sentence-transformers/all-MiniLM-L6-v2") # Using Hugging Face embeddings | |
new_db = FAISS.load_local("faiss_index", embeddings, allow_dangerous_deserialization=True) | |
docs = new_db.similarity_search(user_question) | |
chain = get_conversational_chain() | |
response = chain( | |
{"input_documents": docs, "question": user_question}, | |
return_only_outputs=True | |
) | |
# Debugging: Print the original response | |
print("Original Response:", response['output_text']) | |
# Extract the thought process | |
thought_process = "" | |
if "<think>" in response['output_text'] and "</think>" in response['output_text']: | |
thought_process_match = re.search(r"<think>(.*?)</think>", response['output_text'], re.DOTALL) | |
if thought_process_match: | |
thought_process = thought_process_match.group(1).strip() | |
# Remove the thought process from the main response | |
clean_response = response['output_text'].replace(f"<think>{thought_process}</think>", "").strip() | |
# Debugging: Print the cleaned response | |
print("Cleaned Response:", clean_response) | |
# Display the model's thought process in the expander | |
with st.expander("Model Thought Process"): | |
st.write(thought_process) | |
st.markdown(f"### Reply:\n{clean_response}") | |
def main(): | |
"""Main function to run the Streamlit app.""" | |
st.set_page_config(page_title="Chat PDF", page_icon=":books:", layout="wide") | |
st.title("Chat with PDF using DeepSeek Ai") | |
st.sidebar.header("Upload & Process PDF Files") | |
st.sidebar.markdown( | |
"Using DeepSeek R1 model for advanced conversational capabilities.") | |
with st.sidebar: | |
pdf_docs = st.file_uploader( | |
"Upload your PDF files:", | |
accept_multiple_files=True, | |
type=["pdf"] | |
) | |
if st.button("Submit & Process"): | |
with st.spinner("Processing your files..."): | |
raw_text = get_pdf_text(pdf_docs) | |
text_chunks = get_text_chunks(raw_text) | |
get_vector_store(text_chunks) | |
st.success("PDFs processed and indexed successfully!") | |
st.markdown( | |
"### Ask Questions from Your PDF Files :mag:\n" | |
"Once you upload and process your PDFs, type your questions below." | |
) | |
user_question = st.text_input("Enter your question:", placeholder="What do you want to know?") | |
if user_question: | |
with st.spinner("Fetching your answer..."): | |
user_input(user_question) | |
st.sidebar.info( | |
"**Note:** This app uses DeepSeek R1 model for answering questions accurately." | |
) | |
if __name__ == "__main__": | |
main() | |