Spaces:
Running
Running
Update app.py
Browse files
app.py
CHANGED
@@ -1,115 +1,119 @@
|
|
1 |
-
import streamlit as st
|
2 |
-
from PyPDF2 import PdfReader
|
3 |
-
from langchain.text_splitter import RecursiveCharacterTextSplitter
|
4 |
-
import os
|
5 |
-
from langchain_community.embeddings import HuggingFaceEmbeddings # Using Hugging Face embeddings
|
6 |
-
from langchain.vectorstores import FAISS
|
7 |
-
from langchain_groq import ChatGroq
|
8 |
-
from langchain.chains.question_answering import load_qa_chain
|
9 |
-
from langchain.prompts import PromptTemplate
|
10 |
-
from dotenv import load_dotenv
|
11 |
-
|
12 |
-
# Load environment variables
|
13 |
-
load_dotenv()
|
14 |
-
os.getenv("GROQ_API_KEY")
|
15 |
-
|
16 |
-
def get_pdf_text(pdf_docs):
|
17 |
-
"""Extracts text from uploaded PDF files."""
|
18 |
-
text = ""
|
19 |
-
for pdf in pdf_docs:
|
20 |
-
pdf_reader = PdfReader(pdf)
|
21 |
-
for page in pdf_reader.pages:
|
22 |
-
text += page.extract_text()
|
23 |
-
return text
|
24 |
-
|
25 |
-
def get_text_chunks(text):
|
26 |
-
"""Splits extracted text into manageable chunks."""
|
27 |
-
text_splitter = RecursiveCharacterTextSplitter(chunk_size=10000, chunk_overlap=1000)
|
28 |
-
chunks = text_splitter.split_text(text)
|
29 |
-
return chunks
|
30 |
-
|
31 |
-
def get_vector_store(text_chunks):
|
32 |
-
"""Creates and saves a FAISS vector store from text chunks."""
|
33 |
-
embeddings = HuggingFaceEmbeddings(model_name="sentence-transformers/all-MiniLM-L6-v2") # Using Hugging Face embeddings
|
34 |
-
vector_store = FAISS.from_texts(text_chunks, embedding=embeddings)
|
35 |
-
vector_store.save_local("faiss_index")
|
36 |
-
|
37 |
-
def get_conversational_chain():
|
38 |
-
"""Sets up a conversational chain using Groq LLM."""
|
39 |
-
prompt_template = """
|
40 |
-
Answer the question as detailed as possible from the provided context. If the answer is not in
|
41 |
-
the provided context, just say, "answer is not available in the context." Do not provide incorrect answers.
|
42 |
-
|
43 |
-
Context:
|
44 |
-
{context}?
|
45 |
-
|
46 |
-
Question:
|
47 |
-
{question}
|
48 |
-
|
49 |
-
Answer:
|
50 |
-
"""
|
51 |
-
|
52 |
-
model = ChatGroq(
|
53 |
-
temperature=0.3,
|
54 |
-
model_name="deepseek-r1-distill-llama-70b", # Using Mixtral model through Groq
|
55 |
-
groq_api_key=os.getenv("GROQ_API_KEY")
|
56 |
-
)
|
57 |
-
prompt = PromptTemplate(template=prompt_template, input_variables=["context", "question"])
|
58 |
-
chain = load_qa_chain(model, chain_type="stuff", prompt=prompt)
|
59 |
-
return chain
|
60 |
-
|
61 |
-
def user_input(user_question):
|
62 |
-
"""Handles user queries by retrieving answers from the vector store."""
|
63 |
-
embeddings = HuggingFaceEmbeddings(model_name="sentence-transformers/all-MiniLM-L6-v2") # Using Hugging Face embeddings
|
64 |
-
|
65 |
-
new_db = FAISS.load_local("faiss_index", embeddings, allow_dangerous_deserialization=True)
|
66 |
-
docs = new_db.similarity_search(user_question)
|
67 |
-
|
68 |
-
chain = get_conversational_chain()
|
69 |
-
|
70 |
-
response = chain(
|
71 |
-
{"input_documents": docs, "question": user_question},
|
72 |
-
return_only_outputs=True
|
73 |
-
)
|
74 |
-
|
75 |
-
|
76 |
-
|
77 |
-
|
78 |
-
|
79 |
-
st.
|
80 |
-
|
81 |
-
|
82 |
-
|
83 |
-
st.
|
84 |
-
|
85 |
-
|
86 |
-
|
87 |
-
|
88 |
-
|
89 |
-
|
90 |
-
|
91 |
-
|
92 |
-
|
93 |
-
|
94 |
-
|
95 |
-
|
96 |
-
|
97 |
-
|
98 |
-
|
99 |
-
|
100 |
-
|
101 |
-
|
102 |
-
|
103 |
-
|
104 |
-
|
105 |
-
|
106 |
-
|
107 |
-
|
108 |
-
|
109 |
-
|
110 |
-
|
111 |
-
"
|
112 |
-
|
113 |
-
|
114 |
-
|
115 |
-
|
|
|
|
|
|
|
|
|
|
1 |
+
import streamlit as st
|
2 |
+
from PyPDF2 import PdfReader
|
3 |
+
from langchain.text_splitter import RecursiveCharacterTextSplitter
|
4 |
+
import os
|
5 |
+
from langchain_community.embeddings import HuggingFaceEmbeddings # Using Hugging Face embeddings
|
6 |
+
from langchain.vectorstores import FAISS
|
7 |
+
from langchain_groq import ChatGroq
|
8 |
+
from langchain.chains.question_answering import load_qa_chain
|
9 |
+
from langchain.prompts import PromptTemplate
|
10 |
+
from dotenv import load_dotenv
|
11 |
+
|
12 |
+
# Load environment variables
|
13 |
+
load_dotenv()
|
14 |
+
os.getenv("GROQ_API_KEY")
|
15 |
+
|
16 |
+
def get_pdf_text(pdf_docs):
|
17 |
+
"""Extracts text from uploaded PDF files."""
|
18 |
+
text = ""
|
19 |
+
for pdf in pdf_docs:
|
20 |
+
pdf_reader = PdfReader(pdf)
|
21 |
+
for page in pdf_reader.pages:
|
22 |
+
text += page.extract_text()
|
23 |
+
return text
|
24 |
+
|
25 |
+
def get_text_chunks(text):
|
26 |
+
"""Splits extracted text into manageable chunks."""
|
27 |
+
text_splitter = RecursiveCharacterTextSplitter(chunk_size=10000, chunk_overlap=1000)
|
28 |
+
chunks = text_splitter.split_text(text)
|
29 |
+
return chunks
|
30 |
+
|
31 |
+
def get_vector_store(text_chunks):
|
32 |
+
"""Creates and saves a FAISS vector store from text chunks."""
|
33 |
+
embeddings = HuggingFaceEmbeddings(model_name="sentence-transformers/all-MiniLM-L6-v2") # Using Hugging Face embeddings
|
34 |
+
vector_store = FAISS.from_texts(text_chunks, embedding=embeddings)
|
35 |
+
vector_store.save_local("faiss_index")
|
36 |
+
|
37 |
+
def get_conversational_chain():
|
38 |
+
"""Sets up a conversational chain using Groq LLM."""
|
39 |
+
prompt_template = """
|
40 |
+
Answer the question as detailed as possible from the provided context. If the answer is not in
|
41 |
+
the provided context, just say, "answer is not available in the context." Do not provide incorrect answers.
|
42 |
+
|
43 |
+
Context:
|
44 |
+
{context}?
|
45 |
+
|
46 |
+
Question:
|
47 |
+
{question}
|
48 |
+
|
49 |
+
Answer:
|
50 |
+
"""
|
51 |
+
|
52 |
+
model = ChatGroq(
|
53 |
+
temperature=0.3,
|
54 |
+
model_name="deepseek-r1-distill-llama-70b", # Using Mixtral model through Groq
|
55 |
+
groq_api_key=os.getenv("GROQ_API_KEY")
|
56 |
+
)
|
57 |
+
prompt = PromptTemplate(template=prompt_template, input_variables=["context", "question"])
|
58 |
+
chain = load_qa_chain(model, chain_type="stuff", prompt=prompt)
|
59 |
+
return chain
|
60 |
+
|
61 |
+
def user_input(user_question):
|
62 |
+
"""Handles user queries by retrieving answers from the vector store."""
|
63 |
+
embeddings = HuggingFaceEmbeddings(model_name="sentence-transformers/all-MiniLM-L6-v2") # Using Hugging Face embeddings
|
64 |
+
|
65 |
+
new_db = FAISS.load_local("faiss_index", embeddings, allow_dangerous_deserialization=True)
|
66 |
+
docs = new_db.similarity_search(user_question)
|
67 |
+
|
68 |
+
chain = get_conversational_chain()
|
69 |
+
|
70 |
+
response = chain(
|
71 |
+
{"input_documents": docs, "question": user_question},
|
72 |
+
return_only_outputs=True
|
73 |
+
)
|
74 |
+
|
75 |
+
# Display the model's thought process
|
76 |
+
with st.expander("Model Thought Process"):
|
77 |
+
st.markdown("<think>Thinking...</think>", unsafe_allow_html=True)
|
78 |
+
|
79 |
+
st.markdown(f"### Reply:\n{response['output_text']}")
|
80 |
+
|
81 |
+
def main():
|
82 |
+
"""Main function to run the Streamlit app."""
|
83 |
+
st.set_page_config(page_title="Chat PDF", page_icon=":books:", layout="wide")
|
84 |
+
st.title("Chat with PDF using DeepSeek Ai")
|
85 |
+
|
86 |
+
st.sidebar.header("Upload & Process PDF Files")
|
87 |
+
st.sidebar.markdown(
|
88 |
+
"Using DeepSeek R1 model for advanced conversational capabilities.")
|
89 |
+
|
90 |
+
with st.sidebar:
|
91 |
+
pdf_docs = st.file_uploader(
|
92 |
+
"Upload your PDF files:",
|
93 |
+
accept_multiple_files=True,
|
94 |
+
type=["pdf"]
|
95 |
+
)
|
96 |
+
if st.button("Submit & Process"):
|
97 |
+
with st.spinner("Processing your files..."):
|
98 |
+
raw_text = get_pdf_text(pdf_docs)
|
99 |
+
text_chunks = get_text_chunks(raw_text)
|
100 |
+
get_vector_store(text_chunks)
|
101 |
+
st.success("PDFs processed and indexed successfully!")
|
102 |
+
|
103 |
+
st.markdown(
|
104 |
+
"### Ask Questions from Your PDF Files :mag:\n"
|
105 |
+
"Once you upload and process your PDFs, type your questions below."
|
106 |
+
)
|
107 |
+
|
108 |
+
user_question = st.text_input("Enter your question:", placeholder="What do you want to know?")
|
109 |
+
|
110 |
+
if user_question:
|
111 |
+
with st.spinner("Fetching your answer..."):
|
112 |
+
user_input(user_question)
|
113 |
+
|
114 |
+
st.sidebar.info(
|
115 |
+
"**Note:** This app uses DeepSeek R1 model for answering questions accurately."
|
116 |
+
)
|
117 |
+
|
118 |
+
if __name__ == "__main__":
|
119 |
+
main()
|