Spaces:
Running
on
Zero
Running
on
Zero
File size: 22,244 Bytes
1ea89dd |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 |
/*
* Copyright (c) Meta Platforms, Inc. and affiliates.
* All rights reserved.
*
* This source code is licensed under the BSD-style license found in the
* LICENSE file in the root directory of this source tree.
*/
#include <ATen/ATen.h>
#include <ATen/cuda/CUDAContext.h>
#include <c10/cuda/CUDAGuard.h>
#include <float.h>
#include <iostream>
#include <tuple>
#include "utils/dispatch.cuh"
#include "utils/mink.cuh"
// A chunk of work is blocksize-many points of P1.
// The number of potential chunks to do is N*(1+(P1-1)/blocksize)
// call (1+(P1-1)/blocksize) chunks_per_cloud
// These chunks are divided among the gridSize-many blocks.
// In block b, we work on chunks b, b+gridSize, b+2*gridSize etc .
// In chunk i, we work on cloud i/chunks_per_cloud on points starting from
// blocksize*(i%chunks_per_cloud).
template <typename scalar_t>
__global__ void KNearestNeighborKernelV0(
const scalar_t* __restrict__ points1,
const scalar_t* __restrict__ points2,
const int64_t* __restrict__ lengths1,
const int64_t* __restrict__ lengths2,
scalar_t* __restrict__ dists,
int64_t* __restrict__ idxs,
const size_t N,
const size_t P1,
const size_t P2,
const size_t D,
const size_t K,
const size_t norm) {
// Store both dists and indices for knn in global memory.
const int64_t chunks_per_cloud = (1 + (P1 - 1) / blockDim.x);
const int64_t chunks_to_do = N * chunks_per_cloud;
for (int64_t chunk = blockIdx.x; chunk < chunks_to_do; chunk += gridDim.x) {
const int64_t n = chunk / chunks_per_cloud;
const int64_t start_point = blockDim.x * (chunk % chunks_per_cloud);
int64_t p1 = start_point + threadIdx.x;
if (p1 >= lengths1[n])
continue;
int offset = n * P1 * K + p1 * K;
int64_t length2 = lengths2[n];
MinK<scalar_t, int64_t> mink(dists + offset, idxs + offset, K);
for (int p2 = 0; p2 < length2; ++p2) {
// Find the distance between points1[n, p1] and points[n, p2]
scalar_t dist = 0;
for (int d = 0; d < D; ++d) {
scalar_t coord1 = points1[n * P1 * D + p1 * D + d];
scalar_t coord2 = points2[n * P2 * D + p2 * D + d];
scalar_t diff = coord1 - coord2;
scalar_t norm_diff = (norm == 2) ? (diff * diff) : abs(diff);
dist += norm_diff;
}
mink.add(dist, p2);
}
}
}
template <typename scalar_t, int64_t D>
__global__ void KNearestNeighborKernelV1(
const scalar_t* __restrict__ points1,
const scalar_t* __restrict__ points2,
const int64_t* __restrict__ lengths1,
const int64_t* __restrict__ lengths2,
scalar_t* __restrict__ dists,
int64_t* __restrict__ idxs,
const size_t N,
const size_t P1,
const size_t P2,
const size_t K,
const size_t norm) {
// Same idea as the previous version, but hoist D into a template argument
// so we can cache the current point in a thread-local array. We still store
// the current best K dists and indices in global memory, so this should work
// for very large K and fairly large D.
scalar_t cur_point[D];
const int64_t chunks_per_cloud = (1 + (P1 - 1) / blockDim.x);
const int64_t chunks_to_do = N * chunks_per_cloud;
for (int64_t chunk = blockIdx.x; chunk < chunks_to_do; chunk += gridDim.x) {
const int64_t n = chunk / chunks_per_cloud;
const int64_t start_point = blockDim.x * (chunk % chunks_per_cloud);
int64_t p1 = start_point + threadIdx.x;
if (p1 >= lengths1[n])
continue;
for (int d = 0; d < D; ++d) {
cur_point[d] = points1[n * P1 * D + p1 * D + d];
}
int offset = n * P1 * K + p1 * K;
int64_t length2 = lengths2[n];
MinK<scalar_t, int64_t> mink(dists + offset, idxs + offset, K);
for (int p2 = 0; p2 < length2; ++p2) {
// Find the distance between cur_point and points[n, p2]
scalar_t dist = 0;
for (int d = 0; d < D; ++d) {
scalar_t diff = cur_point[d] - points2[n * P2 * D + p2 * D + d];
scalar_t norm_diff = (norm == 2) ? (diff * diff) : abs(diff);
dist += norm_diff;
}
mink.add(dist, p2);
}
}
}
// This is a shim functor to allow us to dispatch using DispatchKernel1D
template <typename scalar_t, int64_t D>
struct KNearestNeighborV1Functor {
static void run(
size_t blocks,
size_t threads,
const scalar_t* __restrict__ points1,
const scalar_t* __restrict__ points2,
const int64_t* __restrict__ lengths1,
const int64_t* __restrict__ lengths2,
scalar_t* __restrict__ dists,
int64_t* __restrict__ idxs,
const size_t N,
const size_t P1,
const size_t P2,
const size_t K,
const size_t norm) {
cudaStream_t stream = at::cuda::getCurrentCUDAStream();
KNearestNeighborKernelV1<scalar_t, D><<<blocks, threads, 0, stream>>>(
points1, points2, lengths1, lengths2, dists, idxs, N, P1, P2, K, norm);
}
};
template <typename scalar_t, int64_t D, int64_t K>
__global__ void KNearestNeighborKernelV2(
const scalar_t* __restrict__ points1,
const scalar_t* __restrict__ points2,
const int64_t* __restrict__ lengths1,
const int64_t* __restrict__ lengths2,
scalar_t* __restrict__ dists,
int64_t* __restrict__ idxs,
const int64_t N,
const int64_t P1,
const int64_t P2,
const size_t norm) {
// Same general implementation as V2, but also hoist K into a template arg.
scalar_t cur_point[D];
scalar_t min_dists[K];
int min_idxs[K];
const int64_t chunks_per_cloud = (1 + (P1 - 1) / blockDim.x);
const int64_t chunks_to_do = N * chunks_per_cloud;
for (int64_t chunk = blockIdx.x; chunk < chunks_to_do; chunk += gridDim.x) {
const int64_t n = chunk / chunks_per_cloud;
const int64_t start_point = blockDim.x * (chunk % chunks_per_cloud);
int64_t p1 = start_point + threadIdx.x;
if (p1 >= lengths1[n])
continue;
for (int d = 0; d < D; ++d) {
cur_point[d] = points1[n * P1 * D + p1 * D + d];
}
int64_t length2 = lengths2[n];
MinK<scalar_t, int> mink(min_dists, min_idxs, K);
for (int p2 = 0; p2 < length2; ++p2) {
scalar_t dist = 0;
for (int d = 0; d < D; ++d) {
int offset = n * P2 * D + p2 * D + d;
scalar_t diff = cur_point[d] - points2[offset];
scalar_t norm_diff = (norm == 2) ? (diff * diff) : abs(diff);
dist += norm_diff;
}
mink.add(dist, p2);
}
for (int k = 0; k < mink.size(); ++k) {
idxs[n * P1 * K + p1 * K + k] = min_idxs[k];
dists[n * P1 * K + p1 * K + k] = min_dists[k];
}
}
}
// This is a shim so we can dispatch using DispatchKernel2D
template <typename scalar_t, int64_t D, int64_t K>
struct KNearestNeighborKernelV2Functor {
static void run(
size_t blocks,
size_t threads,
const scalar_t* __restrict__ points1,
const scalar_t* __restrict__ points2,
const int64_t* __restrict__ lengths1,
const int64_t* __restrict__ lengths2,
scalar_t* __restrict__ dists,
int64_t* __restrict__ idxs,
const int64_t N,
const int64_t P1,
const int64_t P2,
const size_t norm) {
cudaStream_t stream = at::cuda::getCurrentCUDAStream();
KNearestNeighborKernelV2<scalar_t, D, K><<<blocks, threads, 0, stream>>>(
points1, points2, lengths1, lengths2, dists, idxs, N, P1, P2, norm);
}
};
template <typename scalar_t, int D, int K>
__global__ void KNearestNeighborKernelV3(
const scalar_t* __restrict__ points1,
const scalar_t* __restrict__ points2,
const int64_t* __restrict__ lengths1,
const int64_t* __restrict__ lengths2,
scalar_t* __restrict__ dists,
int64_t* __restrict__ idxs,
const size_t N,
const size_t P1,
const size_t P2,
const size_t norm) {
// Same idea as V2, but use register indexing for thread-local arrays.
// Enabling sorting for this version leads to huge slowdowns; I suspect
// that it forces min_dists into local memory rather than registers.
// As a result this version is always unsorted.
scalar_t cur_point[D];
scalar_t min_dists[K];
int min_idxs[K];
const int64_t chunks_per_cloud = (1 + (P1 - 1) / blockDim.x);
const int64_t chunks_to_do = N * chunks_per_cloud;
for (int64_t chunk = blockIdx.x; chunk < chunks_to_do; chunk += gridDim.x) {
const int64_t n = chunk / chunks_per_cloud;
const int64_t start_point = blockDim.x * (chunk % chunks_per_cloud);
int64_t p1 = start_point + threadIdx.x;
if (p1 >= lengths1[n])
continue;
for (int d = 0; d < D; ++d) {
cur_point[d] = points1[n * P1 * D + p1 * D + d];
}
int64_t length2 = lengths2[n];
RegisterMinK<scalar_t, int, K> mink(min_dists, min_idxs);
for (int p2 = 0; p2 < length2; ++p2) {
scalar_t dist = 0;
for (int d = 0; d < D; ++d) {
int offset = n * P2 * D + p2 * D + d;
scalar_t diff = cur_point[d] - points2[offset];
scalar_t norm_diff = (norm == 2) ? (diff * diff) : abs(diff);
dist += norm_diff;
}
mink.add(dist, p2);
}
for (int k = 0; k < mink.size(); ++k) {
idxs[n * P1 * K + p1 * K + k] = min_idxs[k];
dists[n * P1 * K + p1 * K + k] = min_dists[k];
}
}
}
// This is a shim so we can dispatch using DispatchKernel2D
template <typename scalar_t, int64_t D, int64_t K>
struct KNearestNeighborKernelV3Functor {
static void run(
size_t blocks,
size_t threads,
const scalar_t* __restrict__ points1,
const scalar_t* __restrict__ points2,
const int64_t* __restrict__ lengths1,
const int64_t* __restrict__ lengths2,
scalar_t* __restrict__ dists,
int64_t* __restrict__ idxs,
const size_t N,
const size_t P1,
const size_t P2,
const size_t norm) {
cudaStream_t stream = at::cuda::getCurrentCUDAStream();
KNearestNeighborKernelV3<scalar_t, D, K><<<blocks, threads, 0, stream>>>(
points1, points2, lengths1, lengths2, dists, idxs, N, P1, P2, norm);
}
};
constexpr int V1_MIN_D = 1;
constexpr int V1_MAX_D = 32;
constexpr int V2_MIN_D = 1;
constexpr int V2_MAX_D = 8;
constexpr int V2_MIN_K = 1;
constexpr int V2_MAX_K = 32;
constexpr int V3_MIN_D = 1;
constexpr int V3_MAX_D = 8;
constexpr int V3_MIN_K = 1;
constexpr int V3_MAX_K = 4;
bool InBounds(const int64_t min, const int64_t x, const int64_t max) {
return min <= x && x <= max;
}
bool KnnCheckVersion(int version, const int64_t D, const int64_t K) {
if (version == 0) {
return true;
} else if (version == 1) {
return InBounds(V1_MIN_D, D, V1_MAX_D);
} else if (version == 2) {
return InBounds(V2_MIN_D, D, V2_MAX_D) && InBounds(V2_MIN_K, K, V2_MAX_K);
} else if (version == 3) {
return InBounds(V3_MIN_D, D, V3_MAX_D) && InBounds(V3_MIN_K, K, V3_MAX_K);
}
return false;
}
int ChooseVersion(const int64_t D, const int64_t K) {
for (int version = 3; version >= 1; version--) {
if (KnnCheckVersion(version, D, K)) {
return version;
}
}
return 0;
}
std::tuple<at::Tensor, at::Tensor> KNearestNeighborIdxCuda(
const at::Tensor& p1,
const at::Tensor& p2,
const at::Tensor& lengths1,
const at::Tensor& lengths2,
const int norm,
const int K,
int version) {
// Check inputs are on the same device
at::TensorArg p1_t{p1, "p1", 1}, p2_t{p2, "p2", 2},
lengths1_t{lengths1, "lengths1", 3}, lengths2_t{lengths2, "lengths2", 4};
at::CheckedFrom c = "KNearestNeighborIdxCuda";
at::checkAllSameGPU(c, {p1_t, p2_t, lengths1_t, lengths2_t});
at::checkAllSameType(c, {p1_t, p2_t});
// Set the device for the kernel launch based on the device of the input
at::cuda::CUDAGuard device_guard(p1.device());
cudaStream_t stream = at::cuda::getCurrentCUDAStream();
const auto N = p1.size(0);
const auto P1 = p1.size(1);
const auto P2 = p2.size(1);
const auto D = p2.size(2);
const int64_t K_64 = K;
TORCH_CHECK((norm == 1) || (norm == 2), "Norm must be 1 or 2.");
TORCH_CHECK(p1.size(2) == D, "Point sets must have the same last dimension");
auto long_dtype = lengths1.options().dtype(at::kLong);
auto idxs = at::zeros({N, P1, K}, long_dtype);
auto dists = at::zeros({N, P1, K}, p1.options());
if (idxs.numel() == 0) {
AT_CUDA_CHECK(cudaGetLastError());
return std::make_tuple(idxs, dists);
}
if (version < 0) {
version = ChooseVersion(D, K);
} else if (!KnnCheckVersion(version, D, K)) {
int new_version = ChooseVersion(D, K);
std::cout << "WARNING: Requested KNN version " << version
<< " is not compatible with D = " << D << "; K = " << K
<< ". Falling back to version = " << new_version << std::endl;
version = new_version;
}
// At this point we should have a valid version no matter what data the user
// gave us. But we can check once more to be sure; however this time
// assert fail since failing at this point means we have a bug in our version
// selection or checking code.
AT_ASSERTM(KnnCheckVersion(version, D, K), "Invalid version");
const size_t threads = 256;
const size_t blocks = 256;
if (version == 0) {
AT_DISPATCH_FLOATING_TYPES(
p1.scalar_type(), "knn_kernel_cuda", ([&] {
KNearestNeighborKernelV0<scalar_t><<<blocks, threads, 0, stream>>>(
p1.contiguous().data_ptr<scalar_t>(),
p2.contiguous().data_ptr<scalar_t>(),
lengths1.contiguous().data_ptr<int64_t>(),
lengths2.contiguous().data_ptr<int64_t>(),
dists.data_ptr<scalar_t>(),
idxs.data_ptr<int64_t>(),
N,
P1,
P2,
D,
K,
norm);
}));
} else if (version == 1) {
AT_DISPATCH_FLOATING_TYPES(p1.scalar_type(), "knn_kernel_cuda", ([&] {
DispatchKernel1D<
KNearestNeighborV1Functor,
scalar_t,
V1_MIN_D,
V1_MAX_D>(
D,
blocks,
threads,
p1.contiguous().data_ptr<scalar_t>(),
p2.contiguous().data_ptr<scalar_t>(),
lengths1.contiguous().data_ptr<int64_t>(),
lengths2.contiguous().data_ptr<int64_t>(),
dists.data_ptr<scalar_t>(),
idxs.data_ptr<int64_t>(),
N,
P1,
P2,
K,
norm);
}));
} else if (version == 2) {
AT_DISPATCH_FLOATING_TYPES(p1.scalar_type(), "knn_kernel_cuda", ([&] {
DispatchKernel2D<
KNearestNeighborKernelV2Functor,
scalar_t,
V2_MIN_D,
V2_MAX_D,
V2_MIN_K,
V2_MAX_K>(
D,
K_64,
blocks,
threads,
p1.contiguous().data_ptr<scalar_t>(),
p2.contiguous().data_ptr<scalar_t>(),
lengths1.contiguous().data_ptr<int64_t>(),
lengths2.contiguous().data_ptr<int64_t>(),
dists.data_ptr<scalar_t>(),
idxs.data_ptr<int64_t>(),
N,
P1,
P2,
norm);
}));
} else if (version == 3) {
AT_DISPATCH_FLOATING_TYPES(p1.scalar_type(), "knn_kernel_cuda", ([&] {
DispatchKernel2D<
KNearestNeighborKernelV3Functor,
scalar_t,
V3_MIN_D,
V3_MAX_D,
V3_MIN_K,
V3_MAX_K>(
D,
K_64,
blocks,
threads,
p1.contiguous().data_ptr<scalar_t>(),
p2.contiguous().data_ptr<scalar_t>(),
lengths1.contiguous().data_ptr<int64_t>(),
lengths2.contiguous().data_ptr<int64_t>(),
dists.data_ptr<scalar_t>(),
idxs.data_ptr<int64_t>(),
N,
P1,
P2,
norm);
}));
}
AT_CUDA_CHECK(cudaGetLastError());
return std::make_tuple(idxs, dists);
}
// ------------------------------------------------------------- //
// Backward Operators //
// ------------------------------------------------------------- //
// TODO(gkioxari) support all data types once AtomicAdd supports doubles.
// Currently, support is for floats only.
__global__ void KNearestNeighborBackwardKernel(
const float* __restrict__ p1, // (N, P1, D)
const float* __restrict__ p2, // (N, P2, D)
const int64_t* __restrict__ lengths1, // (N,)
const int64_t* __restrict__ lengths2, // (N,)
const int64_t* __restrict__ idxs, // (N, P1, K)
const float* __restrict__ grad_dists, // (N, P1, K)
float* __restrict__ grad_p1, // (N, P1, D)
float* __restrict__ grad_p2, // (N, P2, D)
const size_t N,
const size_t P1,
const size_t P2,
const size_t K,
const size_t D,
const size_t norm) {
const size_t tid = blockIdx.x * blockDim.x + threadIdx.x;
const size_t stride = gridDim.x * blockDim.x;
for (size_t i = tid; i < N * P1 * K * D; i += stride) {
const size_t n = i / (P1 * K * D); // batch index
size_t rem = i % (P1 * K * D);
const size_t p1_idx = rem / (K * D); // index of point in p1
rem = rem % (K * D);
const size_t k = rem / D; // k-th nearest neighbor
const size_t d = rem % D; // d-th dimension in the feature vector
const size_t num1 = lengths1[n]; // number of valid points in p1 in batch
const size_t num2 = lengths2[n]; // number of valid points in p2 in batch
if ((p1_idx < num1) && (k < num2)) {
const float grad_dist = grad_dists[n * P1 * K + p1_idx * K + k];
// index of point in p2 corresponding to the k-th nearest neighbor
const int64_t p2_idx = idxs[n * P1 * K + p1_idx * K + k];
// If the index is the pad value of -1 then ignore it
if (p2_idx == -1) {
continue;
}
float diff = 0.0;
if (norm == 1) {
float sign =
(p1[n * P1 * D + p1_idx * D + d] > p2[n * P2 * D + p2_idx * D + d])
? 1.0
: -1.0;
diff = grad_dist * sign;
} else { // norm is 2
diff = 2.0 * grad_dist *
(p1[n * P1 * D + p1_idx * D + d] - p2[n * P2 * D + p2_idx * D + d]);
}
atomicAdd(grad_p1 + n * P1 * D + p1_idx * D + d, diff);
atomicAdd(grad_p2 + n * P2 * D + p2_idx * D + d, -1.0f * diff);
}
}
}
std::tuple<at::Tensor, at::Tensor> KNearestNeighborBackwardCuda(
const at::Tensor& p1,
const at::Tensor& p2,
const at::Tensor& lengths1,
const at::Tensor& lengths2,
const at::Tensor& idxs,
int norm,
const at::Tensor& grad_dists) {
// Check inputs are on the same device
at::TensorArg p1_t{p1, "p1", 1}, p2_t{p2, "p2", 2},
lengths1_t{lengths1, "lengths1", 3}, lengths2_t{lengths2, "lengths2", 4},
idxs_t{idxs, "idxs", 5}, grad_dists_t{grad_dists, "grad_dists", 6};
at::CheckedFrom c = "KNearestNeighborBackwardCuda";
at::checkAllSameGPU(
c, {p1_t, p2_t, lengths1_t, lengths2_t, idxs_t, grad_dists_t});
at::checkAllSameType(c, {p1_t, p2_t, grad_dists_t});
// This is nondeterministic because atomicAdd
at::globalContext().alertNotDeterministic("KNearestNeighborBackwardCuda");
// Set the device for the kernel launch based on the device of the input
at::cuda::CUDAGuard device_guard(p1.device());
cudaStream_t stream = at::cuda::getCurrentCUDAStream();
const auto N = p1.size(0);
const auto P1 = p1.size(1);
const auto P2 = p2.size(1);
const auto D = p2.size(2);
const auto K = idxs.size(2);
TORCH_CHECK(p1.size(2) == D, "Point sets must have the same last dimension");
TORCH_CHECK(idxs.size(0) == N, "KNN idxs must have the same batch dimension");
TORCH_CHECK(
idxs.size(1) == P1, "KNN idxs must have the same point dimension as p1");
TORCH_CHECK(grad_dists.size(0) == N);
TORCH_CHECK(grad_dists.size(1) == P1);
TORCH_CHECK(grad_dists.size(2) == K);
auto grad_p1 = at::zeros({N, P1, D}, p1.options());
auto grad_p2 = at::zeros({N, P2, D}, p2.options());
if (grad_p1.numel() == 0 || grad_p2.numel() == 0) {
AT_CUDA_CHECK(cudaGetLastError());
return std::make_tuple(grad_p1, grad_p2);
}
const int blocks = 64;
const int threads = 512;
KNearestNeighborBackwardKernel<<<blocks, threads, 0, stream>>>(
p1.contiguous().data_ptr<float>(),
p2.contiguous().data_ptr<float>(),
lengths1.contiguous().data_ptr<int64_t>(),
lengths2.contiguous().data_ptr<int64_t>(),
idxs.contiguous().data_ptr<int64_t>(),
grad_dists.contiguous().data_ptr<float>(),
grad_p1.data_ptr<float>(),
grad_p2.data_ptr<float>(),
N,
P1,
P2,
K,
D,
norm);
AT_CUDA_CHECK(cudaGetLastError());
return std::make_tuple(grad_p1, grad_p2);
} |