import numpy as np import torch import torch.nn as nn import torch.nn.functional as F import torch.utils.checkpoint as checkpoint from timm.models.layers import DropPath, to_2tuple, trunc_normal_ from unik3d.utils.misc import get_params, load_checkpoint_swin class Mlp(nn.Module): def __init__( self, in_features, hidden_features=None, out_features=None, act_layer=nn.GELU, drop=0.0, ): super().__init__() out_features = out_features or in_features hidden_features = hidden_features or in_features self.fc1 = nn.Linear(in_features, hidden_features) self.act = act_layer() self.fc2 = nn.Linear(hidden_features, out_features) self.drop = nn.Dropout(drop) def forward(self, x): x = self.fc1(x) x = self.act(x) x = self.drop(x) x = self.fc2(x) x = self.drop(x) return x def window_partition(x, window_size): """ Args: x: (B, H, W, C) window_size (int): window size Returns: windows: (num_windows*B, window_size, window_size, C) """ B, H, W, C = x.shape x = x.view( B, H // window_size[0], window_size[0], W // window_size[1], window_size[1], C ) windows = ( x.permute(0, 1, 3, 2, 4, 5) .contiguous() .view(-1, window_size[0], window_size[1], C) ) return windows def window_reverse(windows, window_size, H, W): """ Args: windows: (num_windows*B, window_size, window_size, C) window_size (int): Window size H (int): Height of image W (int): Width of image Returns: x: (B, H, W, C) """ B = int(windows.shape[0] / (H * W / window_size[0] / window_size[1])) x = windows.view( B, H // window_size[0], W // window_size[1], window_size[0], window_size[1], -1 ) x = x.permute(0, 1, 3, 2, 4, 5).contiguous().view(B, H, W, -1) return x class WindowAttention(nn.Module): r"""Window based multi-head self attention (W-MSA) module with relative position bias. It supports both of shifted and non-shifted window. Args: dim (int): Number of input channels. window_size (tuple[int]): The height and width of the window. num_heads (int): Number of attention heads. qkv_bias (bool, optional): If True, add a learnable bias to query, key, value. Default: True attn_drop (float, optional): Dropout ratio of attention weight. Default: 0.0 proj_drop (float, optional): Dropout ratio of output. Default: 0.0 pretrained_window_size (tuple[int]): The height and width of the window in pre-training. """ def __init__( self, dim, window_size, num_heads, qkv_bias=True, attn_drop=0.0, proj_drop=0.0, pretrained_window_size=[0, 0], ): super().__init__() self.dim = dim self.window_size = window_size # Wh, Ww self.pretrained_window_size = pretrained_window_size self.num_heads = num_heads self.logit_scale = nn.Parameter( torch.log(10 * torch.ones((num_heads, 1, 1))), requires_grad=True ) # mlp to generate continuous relative position bias self.rpe_mlp = nn.Sequential( nn.Linear(2, 512, bias=True), nn.ReLU(inplace=True), nn.Linear(512, num_heads, bias=False), ) # get relative_coords_table relative_coords_h = torch.arange( -(self.window_size[0] - 1), self.window_size[0], dtype=torch.float32 ) relative_coords_w = torch.arange( -(self.window_size[1] - 1), self.window_size[1], dtype=torch.float32 ) relative_coords_table = ( torch.stack(torch.meshgrid([relative_coords_h, relative_coords_w])) .permute(1, 2, 0) .contiguous() .unsqueeze(0) ) # 1, 2*Wh-1, 2*Ww-1, 2 if pretrained_window_size[0] > 0: relative_coords_table[:, :, :, 0] /= pretrained_window_size[0] - 1 relative_coords_table[:, :, :, 1] /= pretrained_window_size[1] - 1 else: relative_coords_table[:, :, :, 0] /= self.window_size[0] - 1 relative_coords_table[:, :, :, 1] /= self.window_size[1] - 1 relative_coords_table *= 8 # normalize to -8, 8 relative_coords_table = ( torch.sign(relative_coords_table) * torch.log2(torch.abs(relative_coords_table) + 1.0) / np.log2(8) ) self.register_buffer("relative_coords_table", relative_coords_table) # get pair-wise relative position index for each token inside the window coords_h = torch.arange(self.window_size[0]) coords_w = torch.arange(self.window_size[1]) coords = torch.stack(torch.meshgrid([coords_h, coords_w])) # 2, Wh, Ww coords_flatten = torch.flatten(coords, 1) # 2, Wh*Ww relative_coords = ( coords_flatten[:, :, None] - coords_flatten[:, None, :] ) # 2, Wh*Ww, Wh*Ww relative_coords = relative_coords.permute( 1, 2, 0 ).contiguous() # Wh*Ww, Wh*Ww, 2 relative_coords[:, :, 0] += self.window_size[0] - 1 # shift to start from 0 relative_coords[:, :, 1] += self.window_size[1] - 1 relative_coords[:, :, 0] *= 2 * self.window_size[1] - 1 relative_position_index = relative_coords.sum(-1) # Wh*Ww, Wh*Ww self.register_buffer("relative_position_index", relative_position_index) self.qkv = nn.Linear(dim, dim * 3, bias=False) if qkv_bias: self.q_bias = nn.Parameter(torch.zeros(dim)) self.v_bias = nn.Parameter(torch.zeros(dim)) else: self.q_bias = None self.v_bias = None self.attn_drop = nn.Dropout(attn_drop) self.proj = nn.Linear(dim, dim) self.proj_drop = nn.Dropout(proj_drop) self.softmax = nn.Softmax(dim=-1) def forward(self, x, mask=None): """ Args: x: input features with shape of (num_windows*B, N, C) mask: (0/-inf) mask with shape of (num_windows, Wh*Ww, Wh*Ww) or None """ B_, N, C = x.shape qkv_bias = None if self.q_bias is not None: qkv_bias = torch.cat( ( self.q_bias, torch.zeros_like(self.v_bias, requires_grad=False), self.v_bias, ) ) qkv = F.linear(input=x, weight=self.qkv.weight, bias=qkv_bias) qkv = qkv.reshape(B_, N, 3, self.num_heads, -1).permute(2, 0, 3, 1, 4) q, k, v = ( qkv[0], qkv[1], qkv[2], ) # make torchscript happy (cannot use tensor as tuple) # cosine attention attn = F.normalize(q, dim=-1) @ F.normalize(k, dim=-1).transpose(-2, -1) logit_scale = torch.clamp( self.logit_scale, max=torch.log(torch.tensor(1.0 / 0.01, device=self.logit_scale.device)), ).exp() attn = attn * logit_scale relative_position_bias_table = self.rpe_mlp(self.relative_coords_table).view( -1, self.num_heads ) relative_position_bias = relative_position_bias_table[ self.relative_position_index.view(-1) ].view( self.window_size[0] * self.window_size[1], self.window_size[0] * self.window_size[1], -1, ) # Wh*Ww,Wh*Ww,nH relative_position_bias = relative_position_bias.permute( 2, 0, 1 ).contiguous() # nH, Wh*Ww, Wh*Ww relative_position_bias = 16 * torch.sigmoid(relative_position_bias) attn = attn + relative_position_bias.unsqueeze(0) if mask is not None: nW = mask.shape[0] attn = attn.view(B_ // nW, nW, self.num_heads, N, N) + mask.unsqueeze( 1 ).unsqueeze(0) attn = attn.view(-1, self.num_heads, N, N) attn = self.softmax(attn) attn = self.attn_drop(attn) x = (attn @ v).transpose(1, 2).reshape(B_, N, C) x = self.proj(x) x = self.proj_drop(x) return x def extra_repr(self) -> str: return ( f"dim={self.dim}, window_size={self.window_size}, " f"pretrained_window_size={self.pretrained_window_size}, num_heads={self.num_heads}" ) def flops(self, N): # calculate flops for 1 window with token length of N flops = 0 # qkv = self.qkv(x) flops += N * self.dim * 3 * self.dim # attn = (q @ k.transpose(-2, -1)) flops += self.num_heads * N * (self.dim // self.num_heads) * N # x = (attn @ v) flops += self.num_heads * N * N * (self.dim // self.num_heads) # x = self.proj(x) flops += N * self.dim * self.dim return flops class SwinTransformerBlock(nn.Module): r"""Swin Transformer Block. Args: dim (int): Number of input channels. input_resolution (tuple[int]): Input resulotion. num_heads (int): Number of attention heads. window_size (int): Window size. shift_size (int): Shift size for SW-MSA. mlp_ratio (float): Ratio of mlp hidden dim to embedding dim. qkv_bias (bool, optional): If True, add a learnable bias to query, key, value. Default: True drop (float, optional): Dropout rate. Default: 0.0 attn_drop (float, optional): Attention dropout rate. Default: 0.0 drop_path (float, optional): Stochastic depth rate. Default: 0.0 act_layer (nn.Module, optional): Activation layer. Default: nn.GELU norm_layer (nn.Module, optional): Normalization layer. Default: nn.LayerNorm pretrained_window_size (int): Window size in pre-training. """ def __init__( self, dim, input_resolution, num_heads, window_size=7, shift_size=0, mlp_ratio=4.0, qkv_bias=True, drop=0.0, attn_drop=0.0, drop_path=0.0, act_layer=nn.GELU, norm_layer=nn.LayerNorm, pretrained_window_size=0, ): super().__init__() self.dim = dim self.num_heads = num_heads self.window_size = window_size self.shift_size = shift_size self.mlp_ratio = mlp_ratio if input_resolution[0] <= self.window_size[0]: self.shift_size[0] = 0 self.window_size[0] = input_resolution[0] if input_resolution[1] <= self.window_size[1]: self.shift_size[1] = 0 self.window_size[1] = input_resolution[1] assert ( 0 <= self.shift_size[1] < self.window_size[1] ), "shift_size must in 0-window_size" assert ( 0 <= self.shift_size[0] < self.window_size[0] ), "shift_size must in 0-window_size" self.norm1 = norm_layer(dim) self.attn = WindowAttention( dim, window_size=self.window_size, num_heads=num_heads, qkv_bias=qkv_bias, attn_drop=attn_drop, proj_drop=drop, pretrained_window_size=pretrained_window_size, ) self.drop_path = DropPath(drop_path) if drop_path > 0.0 else nn.Identity() self.norm2 = norm_layer(dim) mlp_hidden_dim = int(dim * mlp_ratio) self.mlp = Mlp( in_features=dim, hidden_features=mlp_hidden_dim, act_layer=act_layer, drop=drop, ) # if self.shift_size > 0: # # calculate attention mask for SW-MSA # H, W = self.input_resolution # img_mask = torch.zeros((1, H, W, 1)) # 1 H W 1 # h_slices = (slice(0, -self.window_size), # slice(-self.window_size, -self.shift_size), # slice(-self.shift_size, None)) # w_slices = (slice(0, -self.window_size), # slice(-self.window_size, -self.shift_size), # slice(-self.shift_size, None)) # cnt = 0 # for h in h_slices: # for w in w_slices: # img_mask[:, h, w, :] = cnt # cnt += 1 # mask_windows = window_partition(img_mask, self.window_size) # nW, window_size, window_size, 1 # mask_windows = mask_windows.view(-1, self.window_size * self.window_size) # attn_mask = mask_windows.unsqueeze(1) - mask_windows.unsqueeze(2) # attn_mask = attn_mask.masked_fill(attn_mask != 0, float(-100.0)).masked_fill(attn_mask == 0, float(0.0)) # else: # attn_mask = None # self.register_buffer("attn_mask", attn_mask) def forward(self, x, mask_matrix): H, W = self.H, self.W B, L, C = x.shape assert L == H * W, "input feature has wrong size" shortcut = x x = x.view(B, H, W, C) # pad feature maps to multiples of window size pad_l = pad_t = 0 pad_r = (self.window_size[1] - W % self.window_size[1]) % self.window_size[1] pad_b = (self.window_size[0] - H % self.window_size[0]) % self.window_size[0] if pad_r > 0 or pad_b > 0: x = F.pad(x, (0, 0, pad_l, pad_r, pad_t, pad_b)) _, Hp, Wp, _ = x.shape # cyclic shift if self.shift_size[0] > 0 or self.shift_size[1] > 0: shifted_x = torch.roll( x, shifts=(-self.shift_size[0], -self.shift_size[1]), dims=(1, 2) ) attn_mask = mask_matrix else: shifted_x = x attn_mask = None # partition windows x_windows = window_partition( shifted_x, self.window_size ) # nW*B, window_size, window_size, C x_windows = x_windows.view( -1, self.window_size[0] * self.window_size[1], C ) # nW*B, window_size*window_size, C # W-MSA/SW-MSA attn_windows = self.attn( x_windows, mask=attn_mask ) # nW*B, window_size*window_size, C # merge windows attn_windows = attn_windows.view( -1, self.window_size[0], self.window_size[1], C ) shifted_x = window_reverse(attn_windows, self.window_size, Hp, Wp) # B H' W' C # reverse cyclic shift if self.shift_size[0] > 0 or self.shift_size[1] > 0: x = torch.roll( shifted_x, shifts=(self.shift_size[0], self.shift_size[1]), dims=(1, 2) ) else: x = shifted_x if pad_r > 0 or pad_b > 0: x = x[:, :H, :W, :].contiguous() x = x.view(B, H * W, C) x = shortcut + self.drop_path(self.norm1(x)) # FFN x = x + self.drop_path(self.norm2(self.mlp(x))) return x def extra_repr(self) -> str: return ( f"dim={self.dim}, input_resolution={self.input_resolution}, num_heads={self.num_heads}, " f"window_size={self.window_size}, shift_size={self.shift_size}, mlp_ratio={self.mlp_ratio}" ) def flops(self): flops = 0 H, W = self.input_resolution # norm1 flops += self.dim * H * W # W-MSA/SW-MSA nW = H * W / self.window_size / self.window_size flops += nW * self.attn.flops(self.window_size * self.window_size) # mlp flops += 2 * H * W * self.dim * self.dim * self.mlp_ratio # norm2 flops += self.dim * H * W return flops class PatchMerging(nn.Module): r"""Patch Merging Layer. Args: input_resolution (tuple[int]): Resolution of input feature. dim (int): Number of input channels. norm_layer (nn.Module, optional): Normalization layer. Default: nn.LayerNorm """ def __init__(self, dim, norm_layer=nn.LayerNorm): super().__init__() self.dim = dim self.reduction = nn.Linear(4 * dim, 2 * dim, bias=False) self.norm = norm_layer(2 * dim) def forward(self, x, H, W): """ x: B, H*W, C """ B, L, C = x.shape assert L == H * W, "input feature has wrong size" assert H % 2 == 0 and W % 2 == 0, f"x size ({H}*{W}) are not even." x = x.view(B, H, W, C) x0 = x[:, 0::2, 0::2, :] # B H/2 W/2 C x1 = x[:, 1::2, 0::2, :] # B H/2 W/2 C x2 = x[:, 0::2, 1::2, :] # B H/2 W/2 C x3 = x[:, 1::2, 1::2, :] # B H/2 W/2 C x = torch.cat([x0, x1, x2, x3], -1) # B H/2 W/2 4*C x = x.view(B, -1, 4 * C) # B H/2*W/2 4*C x = self.reduction(x) x = self.norm(x) return x def extra_repr(self) -> str: return f"input_resolution={self.input_resolution}, dim={self.dim}" def flops(self): H, W = self.input_resolution flops = (H // 2) * (W // 2) * 4 * self.dim * 2 * self.dim flops += H * W * self.dim // 2 return flops class BasicLayer(nn.Module): """A basic Swin Transformer layer for one stage. Args: dim (int): Number of input channels. input_resolution (tuple[int]): Input resolution. depth (int): Number of blocks. num_heads (int): Number of attention heads. window_size (int): Local window size. mlp_ratio (float): Ratio of mlp hidden dim to embedding dim. qkv_bias (bool, optional): If True, add a learnable bias to query, key, value. Default: True drop (float, optional): Dropout rate. Default: 0.0 attn_drop (float, optional): Attention dropout rate. Default: 0.0 drop_path (float | tuple[float], optional): Stochastic depth rate. Default: 0.0 norm_layer (nn.Module, optional): Normalization layer. Default: nn.LayerNorm downsample (nn.Module | None, optional): Downsample layer at the end of the layer. Default: None use_checkpoint (bool): Whether to use checkpointing to save memory. Default: False. pretrained_window_size (int): Local window size in pre-training. """ def __init__( self, dim, input_resolution, depth, num_heads, window_size, use_shift=True, mlp_ratio=4.0, qkv_bias=True, drop=0.0, attn_drop=0.0, drop_path=0.0, norm_layer=nn.LayerNorm, downsample=None, use_checkpoint=False, pretrained_window_size=0, ): super().__init__() self.dim = dim self.depth = depth self.use_checkpoint = use_checkpoint self.window_size = list(to_2tuple(window_size)) pretrained_window_size = list(to_2tuple(pretrained_window_size)) self.shift_size = ( [x // 2 for x in window_size] if isinstance(window_size, (tuple, list)) else window_size // 2 ) self.shift_size = list(to_2tuple(self.shift_size)) # build blocks self.blocks = nn.ModuleList( [ SwinTransformerBlock( dim=dim, input_resolution=input_resolution, num_heads=num_heads, window_size=self.window_size, shift_size=self.shift_size if (i % 2 and use_shift) else [0, 0], mlp_ratio=mlp_ratio, qkv_bias=qkv_bias, drop=drop, attn_drop=attn_drop, drop_path=( drop_path[i] if isinstance(drop_path, list) else drop_path ), norm_layer=norm_layer, pretrained_window_size=pretrained_window_size, ) for i in range(depth) ] ) # patch merging layer if downsample is not None: self.downsample = downsample(dim=dim, norm_layer=norm_layer) else: self.downsample = None def forward(self, x, H, W): # calculate attention mask for SW-MSA Hp = int(np.ceil(H / self.window_size[0])) * self.window_size[0] Wp = int(np.ceil(W / self.window_size[1])) * self.window_size[1] img_mask = torch.zeros((1, Hp, Wp, 1), device=x.device) # 1 Hp Wp 1 h_slices = ( slice(0, -self.window_size[0]), slice(-self.window_size[0], -self.shift_size[0]), slice(-self.shift_size[0], None), ) w_slices = ( slice(0, -self.window_size[1]), slice(-self.window_size[1], -self.shift_size[1]), slice(-self.shift_size[1], None), ) cnt = 0 for h in h_slices: for w in w_slices: img_mask[:, h, w, :] = cnt cnt += 1 mask_windows = window_partition( img_mask, self.window_size ) # nW, window_size, window_size, 1 mask_windows = mask_windows.view(-1, self.window_size[0] * self.window_size[1]) attn_mask = mask_windows.unsqueeze(1) - mask_windows.unsqueeze(2) attn_mask = attn_mask.masked_fill(attn_mask != 0, float(-100.0)).masked_fill( attn_mask == 0, float(0.0) ) x_outs, cls_tokens = [], [] for blk in self.blocks: blk.H, blk.W = H, W if self.use_checkpoint: x = checkpoint.checkpoint(blk, x, attn_mask) else: x = blk(x, attn_mask) x_outs.append(x) if self.downsample is not None: x_down = self.downsample(x, H, W) Wh, Ww = (H + 1) // 2, (W + 1) // 2 return x_outs, H, W, x_down, Wh, Ww else: return x_outs, H, W, x, H, W def extra_repr(self) -> str: return f"dim={self.dim}, input_resolution={self.input_resolution}, depth={self.depth}" def flops(self): flops = 0 for blk in self.blocks: flops += blk.flops() if self.downsample is not None: flops += self.downsample.flops() return flops def _init_respostnorm(self): for blk in self.blocks: nn.init.constant_(blk.norm1.bias, 0) nn.init.constant_(blk.norm1.weight, 0) nn.init.constant_(blk.norm2.bias, 0) nn.init.constant_(blk.norm2.weight, 0) class PatchEmbed(nn.Module): r"""Image to Patch Embedding Args: img_size (int): Image size. Default: 224. patch_size (int): Patch token size. Default: 4. in_chans (int): Number of input image channels. Default: 3. embed_dim (int): Number of linear projection output channels. Default: 96. norm_layer (nn.Module, optional): Normalization layer. Default: None """ def __init__( self, img_size=224, patch_size=4, in_chans=3, embed_dim=96, norm_layer=None ): super().__init__() img_size = to_2tuple(img_size) patch_size = to_2tuple(patch_size) patches_resolution = [ img_size[0] // patch_size[0], img_size[1] // patch_size[1], ] self.img_size = img_size self.patch_size = patch_size self.patches_resolution = patches_resolution self.num_patches = patches_resolution[0] * patches_resolution[1] self.in_chans = in_chans self.embed_dim = embed_dim self.proj = nn.Conv2d( in_chans, embed_dim, kernel_size=patch_size, stride=patch_size ) if norm_layer is not None: self.norm = norm_layer(embed_dim) else: self.norm = None def forward(self, x): """Forward function.""" # padding _, _, H, W = x.size() if W % self.patch_size[1] != 0: x = F.pad(x, (0, self.patch_size[1] - W % self.patch_size[1])) if H % self.patch_size[0] != 0: x = F.pad(x, (0, 0, 0, self.patch_size[0] - H % self.patch_size[0])) x = self.proj(x) # B C Wh Ww if self.norm is not None: Wh, Ww = x.size(2), x.size(3) x = self.norm(x.flatten(2).transpose(1, 2)) x = x.transpose(1, 2).view(-1, self.embed_dim, Wh, Ww) return x def flops(self): Ho, Wo = self.patches_resolution flops = ( Ho * Wo * self.embed_dim * self.in_chans * (self.patch_size[0] * self.patch_size[1]) ) if self.norm is not None: flops += Ho * Wo * self.embed_dim return flops class SwinTransformerV2(nn.Module): r"""Swin Transformer A PyTorch impl of : `Swin Transformer: Hierarchical Vision Transformer using Shifted Windows` - https://arxiv.org/pdf/2103.14030 Args: img_size (int | tuple(int)): Input image size. Default 224 patch_size (int | tuple(int)): Patch size. Default: 4 in_chans (int): Number of input image channels. Default: 3 num_classes (int): Number of classes for classification head. Default: 1000 embed_dim (int): Patch embedding dimension. Default: 96 depths (tuple(int)): Depth of each Swin Transformer layer. num_heads (tuple(int)): Number of attention heads in different layers. window_size (int): Window size. Default: 7 mlp_ratio (float): Ratio of mlp hidden dim to embedding dim. Default: 4 qkv_bias (bool): If True, add a learnable bias to query, key, value. Default: True drop_rate (float): Dropout rate. Default: 0 attn_drop_rate (float): Attention dropout rate. Default: 0 drop_path_rate (float): Stochastic depth rate. Default: 0.1 norm_layer (nn.Module): Normalization layer. Default: nn.LayerNorm. ape (bool): If True, add absolute position embedding to the patch embedding. Default: False patch_norm (bool): If True, add normalization after patch embedding. Default: True use_checkpoint (bool): Whether to use checkpointing to save memory. Default: False pretrained_window_sizes (tuple(int)): Pretrained window sizes of each layer. """ def __init__( self, img_size=224, patch_size=4, in_chans=3, embed_dim=96, depths=[2, 2, 6, 2], num_heads=[3, 6, 12, 24], window_size=7, mlp_ratio=4.0, qkv_bias=True, drop_rate=0.0, attn_drop_rate=0.0, drop_path_rate=0.1, norm_layer=nn.LayerNorm, ape=False, patch_norm=True, use_checkpoint=False, use_shift=True, pretrained_window_sizes=[0, 0, 0, 0], pretrained=None, frozen_stages=-1, output_idx=[2, 4, 22, 24], **kwargs, ): super().__init__() self.num_layers = len(depths) self.depths = output_idx self.embed_dim = embed_dim dims = [embed_dim * 2**i for i in range(len(depths))] self.embed_dims = [ int(dim) for i, dim in enumerate(dims) for _ in range(depths[i]) ] self.ape = ape self.patch_norm = patch_norm self.num_features = [int(embed_dim * 2**i) for i in range(self.num_layers)] self.mlp_ratio = mlp_ratio self.frozen_stages = frozen_stages if isinstance(window_size, int): window_size = [window_size] * self.num_layers if isinstance(use_shift, bool): use_shift = [use_shift] * self.num_layers # self.mask_token = nn.Parameter(torch.zeros(1, 1, self.embed_dim)) # trunc_normal_(self.mask_token, mean=0., std=.02) # split image into non-overlapping patches self.patch_embed = PatchEmbed( img_size=img_size, patch_size=patch_size, in_chans=in_chans, embed_dim=embed_dim, norm_layer=norm_layer if self.patch_norm else None, ) num_patches = self.patch_embed.num_patches patches_resolution = self.patch_embed.patches_resolution self.patches_resolution = patches_resolution # absolute position embedding if self.ape: self.absolute_pos_embed = nn.Parameter( torch.zeros(1, num_patches, embed_dim) ) trunc_normal_(self.absolute_pos_embed, std=0.02) self.pos_drop = nn.Dropout(p=drop_rate) # stochastic depth dpr = [ x.item() for x in torch.linspace(0, drop_path_rate, sum(depths)) ] # stochastic depth decay rule # build layers self.layers = nn.ModuleList() for i_layer in range(self.num_layers): layer = BasicLayer( dim=int(embed_dim * 2**i_layer), input_resolution=[ img_size[0] // (2 ** (2 + i_layer)), img_size[1] // (2 ** (2 + i_layer)), ], depth=depths[i_layer], num_heads=num_heads[i_layer], window_size=window_size[i_layer], use_shift=use_shift[i_layer], mlp_ratio=self.mlp_ratio, qkv_bias=qkv_bias, drop=drop_rate, attn_drop=attn_drop_rate, drop_path=dpr[sum(depths[:i_layer]) : sum(depths[: i_layer + 1])], norm_layer=norm_layer, downsample=PatchMerging if (i_layer < self.num_layers - 1) else None, use_checkpoint=use_checkpoint, pretrained_window_size=pretrained_window_sizes[i_layer], ) self.layers.append(layer) self.apply(self._init_weights) for bly in self.layers: bly._init_respostnorm() if pretrained is not None: pretrained_state = torch.load(pretrained, map_location="cpu")["model"] pretrained_state_filtered = load_checkpoint_swin(self, pretrained_state) msg = self.load_state_dict(pretrained_state_filtered, strict=False) self._freeze_stages() def _init_weights(self, m): if isinstance(m, nn.Linear): trunc_normal_(m.weight, std=0.02) if isinstance(m, nn.Linear) and m.bias is not None: nn.init.constant_(m.bias, 0) elif isinstance(m, nn.LayerNorm): nn.init.constant_(m.bias, 0) nn.init.constant_(m.weight, 1.0) @torch.jit.ignore def no_weight_decay(self): return {"absolute_pos_embed"} @torch.jit.ignore def no_weight_decay_keywords(self): return {"rpe_mlp", "logit_scale", "relative_position_bias_table", "mask_token"} def forward(self, x, mask=None): """Forward function.""" # Add requires_grad_() to all input to support freezing with gradient checkpointing! x = self.patch_embed(x.requires_grad_()) B, Wh, Ww = x.size(0), x.size(2), x.size(3) if self.ape: # interpolate the position embedding to the corresponding size absolute_pos_embed = F.interpolate( self.absolute_pos_embed, size=(Wh, Ww), mode="bicubic", align_corners=True, ) x = (x + absolute_pos_embed).flatten(2).transpose(1, 2) # B Wh*Ww C else: x = x.flatten(2).transpose(1, 2) x = self.pos_drop(x) # B, L, _ = x.shape # if mask is not None: # mask_tokens = self.mask_token.expand(B, L, -1) # mask = mask.flatten(1).unsqueeze(-1).type_as(mask_tokens) # else: # mask = torch.zeros_like(x) # mask_tokens = torch.zeros_like(self.mask_token).expand(B, L, -1) # x = x * (1. - mask) + mask_tokens * mask outs, cls_tokens = [], [] for i in range(self.num_layers): layer = self.layers[i] x_outs, H, W, x, Wh, Ww = layer(x.requires_grad_(), Wh, Ww) out = [ x_out.view(-1, H, W, self.num_features[i]).contiguous() for x_out in x_outs ] outs.extend(out) cls_token_ = [x.mean(dim=(1, 2)).unsqueeze(1).contiguous() for x in out] cls_tokens.extend(cls_token_) return outs, cls_tokens def train(self, mode=True): super().train(mode) self._freeze_stages() def freeze(self) -> None: for module in self.modules(): module.eval() for parameters in self.parameters(): parameters.requires_grad = False def _freeze_stages(self): if self.frozen_stages >= 0: self.patch_embed.eval() for param in self.patch_embed.parameters(): param.requires_grad = False if self.ape: self.absolute_pos_embed.requires_grad = False self.pos_drop.eval() for i in range(1, self.frozen_stages + 1): m = self.layers[i - 1] m.eval() for param in m.parameters(): param.requires_grad = False def flops(self): flops = 0 flops += self.patch_embed.flops() for i, layer in enumerate(self.layers): flops += layer.flops() flops += ( self.num_features * self.patches_resolution[0] * self.patches_resolution[1] // (2**self.num_layers) ) return flops def get_params(self, lr, wd, *args, **kwargs): encoder_p, encoder_lr = get_params(self, lr, wd) return encoder_p, encoder_lr @classmethod def build(cls, config): obj = globals()[config["name"]](config) return obj