File size: 10,280 Bytes
1286e81
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
fe21938
1286e81
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
08ffa6d
1286e81
08ffa6d
1286e81
 
 
 
 
 
 
 
 
fe21938
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1286e81
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
import os
from typing import List, Dict, Tuple, Optional
from langchain_community.vectorstores import Chroma
from langchain_community.chat_models import ChatOpenAI
from langchain.chains import create_extraction_chain
from langchain.prompts import PromptTemplate
from rank_bm25 import BM25Okapi
import logging
import requests
from _utils.gerar_relatorio_modelo_usuario.DocumentSummarizer_simples import (
    DocumentSummarizer,
)
from _utils.models.gerar_relatorio import (
    ContextualizedChunk,
    RetrievalConfig,
)
from modelos_usuarios.serializer import ModeloUsuarioSerializer
from setup.environment import api_url
from rest_framework.response import Response
from _utils.gerar_relatorio_modelo_usuario.contextual_retriever import (
    ContextualRetriever,
)


class EnhancedDocumentSummarizer(DocumentSummarizer):
    def __init__(
        self,
        openai_api_key: str,
        claude_api_key: str,
        config: RetrievalConfig,
        embedding_model,
        chunk_size,
        chunk_overlap,
        num_k_rerank,
        model_cohere_rerank,
        claude_context_model,
        prompt_relatorio,
        gpt_model,
        gpt_temperature,
        id_modelo_do_usuario,
        prompt_modelo,
        reciprocal_rank_fusion,
    ):
        super().__init__(
            openai_api_key,
            os.environ.get("COHERE_API_KEY"),
            embedding_model,
            chunk_size,
            chunk_overlap,
            num_k_rerank,
            model_cohere_rerank,
        )
        self.config = config
        self.contextual_retriever = ContextualRetriever(
            config, claude_api_key, claude_context_model
        )
        self.logger = logging.getLogger(__name__)
        self.prompt_relatorio = prompt_relatorio
        self.gpt_model = gpt_model
        self.gpt_temperature = gpt_temperature
        self.id_modelo_do_usuario = id_modelo_do_usuario
        self.prompt_modelo = prompt_modelo
        self.reciprocal_rank_fusion = reciprocal_rank_fusion

    def create_enhanced_vector_store(
        self, chunks: List[ContextualizedChunk], is_contextualized_chunk
    ) -> Tuple[Chroma, BM25Okapi, List[str]]:
        """Create vector store and BM25 index with contextualized chunks"""
        try:
            # Prepare texts with context
            if is_contextualized_chunk:
                texts = [f"{chunk.context} {chunk.content}" for chunk in chunks]
            else:
                texts = [f"{chunk.content}" for chunk in chunks]

            # Create vector store
            metadatas = []
            for chunk in chunks:
                if is_contextualized_chunk:
                    context = chunk.context
                else:
                    context = ""
                metadatas.append(
                    {
                        "chunk_id": chunk.chunk_id,
                        "page": chunk.page_number,
                        "start_char": chunk.start_char,
                        "end_char": chunk.end_char,
                        "context": context,
                    }
                )

            vector_store = Chroma.from_texts(
                texts=texts, metadatas=metadatas, embedding=self.embeddings
            )

            # Create BM25 index
            tokenized_texts = [text.split() for text in texts]
            bm25 = BM25Okapi(tokenized_texts)

            # Get chunk IDs in order
            chunk_ids = [chunk.chunk_id for chunk in chunks]

            return vector_store, bm25, chunk_ids

        except Exception as e:
            self.logger.error(f"Error creating enhanced vector store: {str(e)}")
            raise

    def retrieve_with_rank_fusion(
        self, vector_store: Chroma, bm25: BM25Okapi, chunk_ids: List[str], query: str
    ) -> List[Dict]:
        """Combine embedding and BM25 retrieval results"""
        try:
            # Get embedding results
            embedding_results = vector_store.similarity_search_with_score(
                query, k=self.config.num_chunks
            )

            # Convert embedding results to list of (chunk_id, score)
            embedding_list = [
                (doc.metadata["chunk_id"], 1 / (1 + score))
                for doc, score in embedding_results
            ]

            # Get BM25 results
            tokenized_query = query.split()
            bm25_scores = bm25.get_scores(tokenized_query)

            # Convert BM25 scores to list of (chunk_id, score)
            bm25_list = [
                (chunk_ids[i], float(score)) for i, score in enumerate(bm25_scores)
            ]

            # Sort bm25_list by score in descending order and limit to top N results
            bm25_list = sorted(bm25_list, key=lambda x: x[1], reverse=True)[
                : self.config.num_chunks
            ]

            # Normalize BM25 scores
            calculo_max = max(
                [score for _, score in bm25_list]
            )  # Criei este max() pois em alguns momentos estava vindo valores 0, e reclamava que não podia dividir por 0
            max_bm25 = calculo_max if bm25_list and calculo_max else 1
            bm25_list = [(doc_id, score / max_bm25) for doc_id, score in bm25_list]

            # Pass the lists to rank fusion
            result_lists = [embedding_list, bm25_list]
            weights = [self.config.embedding_weight, self.config.bm25_weight]

            combined_results = self.reciprocal_rank_fusion(
                result_lists, weights=weights
            )

            return combined_results

        except Exception as e:
            self.logger.error(f"Error in rank fusion retrieval: {str(e)}")
            raise

    def generate_enhanced_summary(
        self,
        vector_store: Chroma,
        bm25: BM25Okapi,
        chunk_ids: List[str],
        query: str = "Summarize the main points of this document",
    ) -> List[Dict]:
        """Generate enhanced summary using both vector and BM25 retrieval"""
        try:
            # Get combined results using rank fusion
            ranked_results = self.retrieve_with_rank_fusion(
                vector_store, bm25, chunk_ids, query
            )

            # Prepare context and track sources
            contexts = []
            sources = []

            # Get full documents for top results
            for chunk_id, score in ranked_results[: self.config.num_chunks]:
                results = vector_store.get(
                    where={"chunk_id": chunk_id}, include=["documents", "metadatas"]
                )

                if results["documents"]:
                    context = results["documents"][0]
                    metadata = results["metadatas"][0]

                    contexts.append(context)
                    sources.append(
                        {
                            "content": context,
                            "page": metadata["page"],
                            "chunk_id": chunk_id,
                            "relevance_score": score,
                            "context": metadata.get("context", ""),
                        }
                    )

            url_request = f"{api_url}/modelo/{self.id_modelo_do_usuario}"
            print("url_request: ", url_request)
            resposta = requests.get(url_request)
            print("resposta: ", resposta)

            if resposta.status_code != 200:
                return Response(
                    {
                        "error": "Ocorreu um problema. Pode ser que o modelo não tenha sido encontrado. Tente novamente e/ou entre em contato com a equipe técnica"
                    }
                )

            modelo_buscado = resposta.json()["modelo"]
            # from modelos_usuarios.models import ModeloUsuarioModel

            # # try:
            # modelo_buscado = ModeloUsuarioModel.objects.get(
            #     pk=self.id_modelo_do_usuario
            # )
            # serializer = ModeloUsuarioSerializer(modelo_buscado)
            # print("serializer.data: ", serializer.data)

            # except:
            #     return Response(
            #         {
            #             "error": "Ocorreu um problema. Pode ser que o modelo não tenha sido encontrado. Tente novamente e/ou entre em contato com a equipe técnica"
            #         }
            #     )

            # print("modelo_buscado: ", modelo_buscado)

            llm = ChatOpenAI(
                temperature=self.gpt_temperature,
                model_name=self.gpt_model,
                api_key=self.openai_api_key,
            )

            prompt_gerar_relatorio = PromptTemplate(
                template=self.prompt_relatorio, input_variables=["context"]
            )

            relatorio_gerado = llm.predict(
                prompt_gerar_relatorio.format(context="\n\n".join(contexts))
            )

            prompt_gerar_modelo = PromptTemplate(
                template=self.prompt_modelo,
                input_variables=["context", "modelo_usuario"],
            )

            modelo_gerado = llm.predict(
                prompt_gerar_modelo.format(
                    context=relatorio_gerado, modelo_usuario=modelo_buscado
                )
            )

            # Split the response into paragraphs
            summaries = [p.strip() for p in modelo_gerado.split("\n\n") if p.strip()]

            # Create structured output
            structured_output = []
            for idx, summary in enumerate(summaries):
                source_idx = min(idx, len(sources) - 1)
                structured_output.append(
                    {
                        "content": summary,
                        "source": {
                            "page": sources[source_idx]["page"],
                            "text": sources[source_idx]["content"][:200] + "...",
                            "context": sources[source_idx]["context"],
                            "relevance_score": sources[source_idx]["relevance_score"],
                            "chunk_id": sources[source_idx]["chunk_id"],
                        },
                    }
                )

            return structured_output

        except Exception as e:
            self.logger.error(f"Error generating enhanced summary: {str(e)}")
            raise