Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -6,7 +6,6 @@ Automatically generated by Colab.
|
|
6 |
Original file is located at
|
7 |
https://colab.research.google.com/drive/1ZybFOpX1r-SAA-RslP5WJkQ9gdI6JCCj
|
8 |
"""
|
9 |
-
|
10 |
import streamlit as st
|
11 |
import os
|
12 |
from langchain.chat_models import ChatOpenAI
|
@@ -17,48 +16,55 @@ from langchain.text_splitter import RecursiveCharacterTextSplitter
|
|
17 |
from langchain.chains import RetrievalQA
|
18 |
import tempfile
|
19 |
|
20 |
-
st.set_page_config(page_title="
|
21 |
-
st.title("
|
22 |
|
23 |
-
uploaded_file = st.file_uploader("
|
24 |
|
25 |
if uploaded_file is not None:
|
26 |
with tempfile.NamedTemporaryFile(delete=False, suffix=".pdf") as tmp:
|
27 |
tmp.write(uploaded_file.read())
|
28 |
pdf_path = tmp.name
|
29 |
|
30 |
-
with st.spinner("Processando o PDF..."):
|
31 |
try:
|
|
|
32 |
loader = PyPDFLoader(pdf_path)
|
33 |
documents = loader.load()
|
34 |
|
35 |
text_splitter = RecursiveCharacterTextSplitter(chunk_size=1000, chunk_overlap=200)
|
36 |
docs = text_splitter.split_documents(documents)
|
37 |
|
|
|
38 |
embeddings = HuggingFaceEmbeddings(model_name="all-MiniLM-L6-v2")
|
39 |
vectorstore = FAISS.from_documents(docs, embeddings)
|
40 |
|
|
|
41 |
llm = ChatOpenAI(
|
42 |
openai_api_base="https://openrouter.ai/api/v1",
|
43 |
openai_api_key=os.environ["OPENROUTER_API_KEY"],
|
44 |
model='deepseek/deepseek-r1-zero:free'
|
45 |
)
|
46 |
|
|
|
47 |
qa_chain = RetrievalQA.from_chain_type(
|
48 |
llm=llm,
|
49 |
retriever=vectorstore.as_retriever(),
|
50 |
return_source_documents=True
|
51 |
)
|
52 |
|
53 |
-
|
|
|
|
|
|
|
|
|
54 |
|
55 |
-
|
56 |
-
|
57 |
-
st.write(resposta['result'])
|
58 |
|
59 |
-
|
60 |
-
|
61 |
-
|
62 |
|
63 |
except Exception as e:
|
64 |
-
st.error(f"Erro
|
|
|
6 |
Original file is located at
|
7 |
https://colab.research.google.com/drive/1ZybFOpX1r-SAA-RslP5WJkQ9gdI6JCCj
|
8 |
"""
|
|
|
9 |
import streamlit as st
|
10 |
import os
|
11 |
from langchain.chat_models import ChatOpenAI
|
|
|
16 |
from langchain.chains import RetrievalQA
|
17 |
import tempfile
|
18 |
|
19 |
+
st.set_page_config(page_title="Chat com PDF", layout="centered")
|
20 |
+
st.title("📄 Chat com PDF usando LangChain")
|
21 |
|
22 |
+
uploaded_file = st.file_uploader("📤 Envie um arquivo PDF", type="pdf")
|
23 |
|
24 |
if uploaded_file is not None:
|
25 |
with tempfile.NamedTemporaryFile(delete=False, suffix=".pdf") as tmp:
|
26 |
tmp.write(uploaded_file.read())
|
27 |
pdf_path = tmp.name
|
28 |
|
29 |
+
with st.spinner("🔍 Processando o PDF..."):
|
30 |
try:
|
31 |
+
# Carregar e dividir o PDF
|
32 |
loader = PyPDFLoader(pdf_path)
|
33 |
documents = loader.load()
|
34 |
|
35 |
text_splitter = RecursiveCharacterTextSplitter(chunk_size=1000, chunk_overlap=200)
|
36 |
docs = text_splitter.split_documents(documents)
|
37 |
|
38 |
+
# Gerar embeddings
|
39 |
embeddings = HuggingFaceEmbeddings(model_name="all-MiniLM-L6-v2")
|
40 |
vectorstore = FAISS.from_documents(docs, embeddings)
|
41 |
|
42 |
+
# Criar modelo LLM
|
43 |
llm = ChatOpenAI(
|
44 |
openai_api_base="https://openrouter.ai/api/v1",
|
45 |
openai_api_key=os.environ["OPENROUTER_API_KEY"],
|
46 |
model='deepseek/deepseek-r1-zero:free'
|
47 |
)
|
48 |
|
49 |
+
# Criar a cadeia de QA
|
50 |
qa_chain = RetrievalQA.from_chain_type(
|
51 |
llm=llm,
|
52 |
retriever=vectorstore.as_retriever(),
|
53 |
return_source_documents=True
|
54 |
)
|
55 |
|
56 |
+
# Interface para pergunta
|
57 |
+
pergunta = st.text_input("❓ Faça uma pergunta sobre o PDF:")
|
58 |
+
|
59 |
+
if pergunta:
|
60 |
+
resposta = qa_chain.invoke({"query": pergunta})
|
61 |
|
62 |
+
st.success("✅ Resposta:")
|
63 |
+
st.write(resposta['result'])
|
|
|
64 |
|
65 |
+
with st.expander("📄 Fontes usadas"):
|
66 |
+
for i, doc in enumerate(resposta['source_documents']):
|
67 |
+
st.markdown(f"**Fonte {i+1}:**\n\n{doc.page_content[:500]}...")
|
68 |
|
69 |
except Exception as e:
|
70 |
+
st.error(f"Erro: {str(e)}")
|