File size: 8,834 Bytes
bcc039b
 
 
 
 
 
 
 
 
 
 
 
 
82ab593
bcc039b
82ab593
7044771
bcc039b
 
 
 
 
 
 
7044771
bcc039b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
7044771
bcc039b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
7044771
bcc039b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
7044771
bcc039b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
7044771
bcc039b
 
7044771
 
bcc039b
7044771
 
 
bcc039b
7044771
bcc039b
7044771
 
 
bcc039b
7044771
 
 
bcc039b
 
 
7044771
 
bcc039b
 
 
 
 
7044771
bcc039b
 
7044771
 
bcc039b
7044771
 
bcc039b
7044771
bcc039b
 
 
7044771
bcc039b
 
7044771
 
bcc039b
 
 
 
 
7044771
 
bcc039b
 
7044771
bcc039b
 
 
7044771
 
 
bcc039b
 
 
7044771
bcc039b
 
 
 
 
 
 
7044771
 
bcc039b
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
# Copyright (c) Meta Platforms, Inc. and affiliates.

import json
import logging
import os
from collections import defaultdict
from datetime import datetime

import torch
from lm_eval import simple_evaluate
from lm_eval.api.instance import Instance
from lm_eval.api.model import LM

from bytelatent.args import EvalArgs, ValidationArgs
from bytelatent.checkpoint import CONSOLIDATE_FOLDER, consolidate_checkpoints
from bytelatent.config_parser import parse_args_to_pydantic_model
from bytelatent.data.file_util import get_fs
from bytelatent.distributed import (
    DistributedArgs,
    dist_mean_dict,
    get_global_rank,
    get_world_size,
    setup_torch_distributed,
)
from bytelatent.generate import (
    PackedCausalTransformerGenerator,
    load_consolidated_model_and_tokenizer,
)

EVAL_FOLDER_NAME = "{:010d}"

logger = logging.getLogger()


def all_dicts_same(dict_list):
    if not dict_list:  # Check if the list is empty
        return True

    # Compare each dictionary to the first one
    first_dict = dict_list[0]
    return all(d == first_dict for d in dict_list)


class MockAccelerator:
    def gather(self, tensor):
        l = [torch.zeros_like(tensor) for _ in range(get_world_size())]
        torch.distributed.all_gather(l, tensor)
        return torch.stack(l)

    def wait_for_everyone(self):
        torch.distributed.barrier()


# Light wrapper around generator for lm-eval harness
class EvalHarnessLM(LM):
    def __init__(self, generator):
        super().__init__()
        self.generator = generator
        self.accelerator = MockAccelerator()
        self._rank = get_global_rank()
        self._world_size = get_world_size()
        self.device = generator.device

    def generate_until(self, requests: list[Instance]) -> list[str]:
        prompts, gen_args = zip(*[req.args for req in requests])
        assert all_dicts_same(gen_args), "Doesn't support different gen args for now"
        gen_args = gen_args[0]
        temperature = gen_args.get("temperature", 0.0)
        top_p = gen_args.get("top_p", None)
        top_k = gen_args.get("top_k", None)
        until = gen_args.get("until", [])

        self.generator.temperature = temperature
        self.generator.top_p = top_p
        self.generator.top_k = top_k
        self.generator.until = until
        generations, _, _ = self.generator.generate(prompts)
        filtered_gen = []
        for g in generations:
            for e in until:
                g = g.replace(e, "")
            filtered_gen.append(g)
        return filtered_gen

    def loglikelihood(self, requests: list[Instance]) -> list[tuple[float, bool]]:
        prompts, continuations = zip(*[req.args for req in requests])
        inputs = [req.args[0] + req.args[1] for req in requests]
        max_gen_len = self.generator.max_gen_len
        # We temporarily lower max gen len
        self.generator.max_gen_len = 1
        _, lls, greedy = self.generator.generate(inputs)
        results = []
        for p, ll, gr in zip(prompts, lls, greedy):
            p_len = len(
                self.generator.tokenizer.encode(p, add_bos=False, add_eos=False)
            )
            results.append((ll[p_len:].sum().item(), gr[p_len:].all().item()))

        self.generator.max_gen_len = max_gen_len
        return results

    def loglikelihood_rolling(self, requests: list[Instance]) -> list[float]:
        prompts = [req.args[0] for req in requests]
        max_gen_len = self.generator.max_gen_len
        # We temporarily lower max gen len
        self.generator.max_gen_len = 1
        _, lls, _ = self.generator.generate(prompts)
        results = []
        for ll in lls:
            results.append((ll.sum().item(),))
        self.generator.max_gen_len = max_gen_len

        return results


def eval_on_val(generator, val_args: ValidationArgs, train_cfg):
    srcs = {}
    for src in val_args.sources:
        path = os.path.join(val_args.root_dir, src)
        srcs[path] = 1.0
    for src in train_cfg.data.sources:
        path = os.path.join(train_cfg.data.root_dir, src)
        srcs[path] = 1.0

    multi_state = init_choice_state(
        "", srcs, 0, get_global_rank(), get_world_size(), "*.val.jsonl"
    )
    path_to_iter = setup_sources(multi_state)

    max_gen_len = generator.max_gen_len
    # We temporarily lower max gen len
    generator.max_gen_len = 1

    all_val_metrics = {}
    for src in path_to_iter:
        jsonl_iterator = path_to_iter[src]
        texts = []
        logger.info(f"Running validation on {src}...")
        for step, (content, state) in enumerate(jsonl_iterator):
            if state["current_iter"] > 0 or (
                val_args.max_steps is not None and step >= val_args.max_steps
            ):
                break
            content_key = "text" if ("text" in content) else "content"
            texts.append(content[content_key])

        _, loglikelihood, _ = generator.generate(texts)

        metrics = defaultdict(list)
        for i, ll in enumerate(loglikelihood):
            tmp = ll.sum().item()
            metrics["nll"].append(tmp)
            metrics["nll_per_token"].append(tmp / len(ll))
            metrics["nll_per_char"].append(tmp / len(texts[i]))

            metrics["avg_seqlen"].append(len(ll))

        for m in metrics:
            metrics[m] = sum(metrics[m]) / len(metrics[m])
        metrics.update(dist_mean_dict(metrics))
        logger.info(f"Validation on {src} done. Metrics: {metrics}")

        name = os.path.basename(src)
        if name in all_val_metrics:
            logger.warning(
                f"Duplicate source name {name}, path {src} in validation sources, renaming to {name}_1"
            )
            name = f"{name}_1"
        all_val_metrics[name] = metrics

    generator.max_gen_len = max_gen_len

    return all_val_metrics


def launch_eval(eval_args: EvalArgs):
    if not torch.distributed.is_initialized():
        setup_torch_distributed(DistributedArgs())

    fs = get_fs(eval_args.ckpt_dir, s3_profile=eval_args.s3_profile)
    if (
        fs.exists(eval_args.ckpt_dir)
        and fs.exists(os.path.join(eval_args.ckpt_dir, "params.json"))
        and len(fs.glob(os.path.join(eval_args.ckpt_dir, "*.pth"))) != 0
    ):
        consolidate_path = eval_args.ckpt_dir
    else:
        consolidate_path = os.path.join(eval_args.ckpt_dir, CONSOLIDATE_FOLDER)
        if not fs.exists(consolidate_path) and get_global_rank() == 0:
            consolidate_path = consolidate_checkpoints(eval_args.ckpt_dir)

    fs.mkdirs(eval_args.dump_dir, exist_ok=True)
    with fs.open(os.path.join(eval_args.dump_dir, "config.yaml"), "w") as f:
        f.write(eval_args.model_dump_json())

    torch.distributed.barrier()
    logger.info("Loading model")
    # TODO: Make this general so that it works with either
    # LMTransformer or Blt, similar with args
    model, tokenizer, train_cfg = load_consolidated_model_and_tokenizer(
        consolidate_path,
    )
    logger.info("Model loaded")
    model.eval()
    generator = PackedCausalTransformerGenerator(eval_args.generator, model, tokenizer)

    wrap = EvalHarnessLM(generator)
    # Redo
    results = simple_evaluate(wrap, eval_args.harness.model_dump())
    val_results = None
    if eval_args.validation:
        val_results = eval_on_val(generator, eval_args.validation, train_cfg)
    if get_global_rank() == 0:
        with fs.open(os.path.join(eval_args.dump_dir, "results.json"), "w") as f:
            f.write(json.dumps(results))
        logger.info(f"All evaluation results: {results['results']}")
        if val_results is not None:
            with fs.open(os.path.join(eval_args.dump_dir, "validation.json"), "w") as f:
                f.write(json.dumps(val_results))
            logger.info(f"All validation results: {val_results}")
    if eval_args.metric_log_dir and get_global_rank() == 0:
        metric_log_path = os.path.join(eval_args.metric_log_dir, "metrics.eval.jsonl")

        logger.info(f"Writing metric logs to {metric_log_path}")
        timestamp = {
            "created_at": datetime.utcnow().isoformat(),
        }
        if eval_args.global_step is not None:
            timestamp["global_step"] = eval_args.global_step
        print(
            json.dumps(timestamp | results["results"]),
            file=fs.open(metric_log_path, mode="a"),
            flush=True,
        )

        val_log_path = os.path.join(
            eval_args.metric_log_dir, "metrics.validation.jsonl"
        )
        if val_results is not None:
            print(
                json.dumps(timestamp | val_results),
                file=fs.open(val_log_path, mode="a"),
                flush=True,
            )

    del generator


def main():
    eval_args = parse_args(EvalArgs)
    launch_eval(eval_args)


if __name__ == "__main__":
    main()