File size: 11,899 Bytes
bcc039b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
# Copyright (c) Meta Platforms, Inc. and affiliates.

import json
import logging
import os
from collections import defaultdict
from dataclasses import asdict, dataclass, field
from datetime import datetime
from pathlib import Path
from typing import Any, List, Optional, Tuple, Union

import torch
from lingua.args import dump_config
from lingua.data import init_choice_state, setup_sources
from lm_eval import simple_evaluate
from lm_eval.api.instance import Instance
from lm_eval.api.model import LM
from omegaconf import OmegaConf

from bytelatent.checkpoint import CONSOLIDATE_FOLDER, consolidate_checkpoints
from bytelatent.distributed import (
    DistributedArgs,
    dist_mean_dict,
    get_global_rank,
    get_world_size,
    setup_torch_distributed,
)
from bytelatent.transformer import LMTransformer, LMTransformerArgs

from apps.main.generate import (
    PackedCausalTransformerGenerator,
    PackedCausalTransformerGeneratorArgs,
    load_consolidated_model_and_tokenizer,
)

EVAL_FOLDER_NAME = "{:010d}"

logger = logging.getLogger()


@dataclass
class LMHarnessArgs:
    tasks: Optional[List[Any]] = None
    num_fewshot: Optional[int] = None
    device: Optional[str] = None
    use_cache: Optional[str] = None
    cache_requests: bool = False
    rewrite_requests_cache: bool = False
    delete_requests_cache: bool = False
    limit: Optional[Union[int, float]] = None
    bootstrap_iters: int = 100000
    check_integrity: bool = False
    write_out: bool = False
    log_samples: bool = True
    system_instruction: Optional[str] = None
    apply_chat_template: Union[bool, str] = False
    fewshot_as_multiturn: bool = False
    gen_kwargs: Optional[str] = None
    verbosity: str = "INFO"
    predict_only: bool = False
    random_seed: int = 0
    numpy_random_seed: int = 1234
    torch_random_seed: int = 1234
    fewshot_random_seed: int = 1234


@dataclass
class ValidationArgs:
    max_steps: Optional[int] = (
        None  # If None the whole validation file is used -> /!\ This number of steps is gpu dependent (100 max steps on 8 gpus = 800 steps on 1 gpu)
    )
    use_val_from_train_src: bool = True  # Use the validation set from training sources
    root_dir: str = ""
    sources: List[str] = field(default_factory=list)  # Other sources to eval on


@dataclass
class EvalArgs:
    name: str = "evals"
    dump_dir: Optional[str] = None
    metric_log_dir: Optional[str] = None
    ckpt_dir: str = ""
    generator: PackedCausalTransformerGeneratorArgs = field(
        default_factory=PackedCausalTransformerGeneratorArgs
    )
    harness: Optional[LMHarnessArgs] = field(default_factory=LMHarnessArgs)
    validation: Optional[ValidationArgs] = field(default_factory=ValidationArgs)

    wandb: Optional[Any] = None

    global_step: Optional[int] = None  # for in-training evaluation


def all_dicts_same(dict_list):
    if not dict_list:  # Check if the list is empty
        return True

    # Compare each dictionary to the first one
    first_dict = dict_list[0]
    return all(d == first_dict for d in dict_list)


class MockAccelerator:
    def gather(self, tensor):
        l = [torch.zeros_like(tensor) for _ in range(get_world_size())]
        torch.distributed.all_gather(l, tensor)
        return torch.stack(l)

    def wait_for_everyone(self):
        torch.distributed.barrier()


# Light wrapper around generator for lm-eval harness
class EvalHarnessLM(LM):
    def __init__(self, generator):
        super().__init__()
        self.generator = generator
        self.accelerator = MockAccelerator()
        self._rank = get_global_rank()
        self._world_size = get_world_size()
        self.device = generator.device

    def generate_until(self, requests: List[Instance]) -> List[str]:
        prompts, gen_args = zip(*[req.args for req in requests])
        assert all_dicts_same(gen_args), "Doesn't support different gen args for now"
        gen_args = gen_args[0]
        temperature = gen_args.get("temperature", 0.0)
        top_p = gen_args.get("top_p", None)
        top_k = gen_args.get("top_k", None)
        until = gen_args.get("until", [])

        self.generator.temperature = temperature
        self.generator.top_p = top_p
        self.generator.top_k = top_k
        self.generator.until = until
        generations, _, _ = self.generator.generate(prompts)
        filtered_gen = []
        for g in generations:
            for e in until:
                g = g.replace(e, "")
            filtered_gen.append(g)
        return filtered_gen

    def loglikelihood(self, requests: List[Instance]) -> List[Tuple[float, bool]]:
        prompts, continuations = zip(*[req.args for req in requests])
        inputs = [req.args[0] + req.args[1] for req in requests]
        max_gen_len = self.generator.max_gen_len
        # We temporarily lower max gen len
        self.generator.max_gen_len = 1
        _, lls, greedy = self.generator.generate(inputs)
        results = []
        for p, ll, gr in zip(prompts, lls, greedy):
            p_len = len(
                self.generator.tokenizer.encode(p, add_bos=False, add_eos=False)
            )
            results.append((ll[p_len:].sum().item(), gr[p_len:].all().item()))

        self.generator.max_gen_len = max_gen_len
        return results

    def loglikelihood_rolling(self, requests: List[Instance]) -> List[float]:
        prompts = [req.args[0] for req in requests]
        max_gen_len = self.generator.max_gen_len
        # We temporarily lower max gen len
        self.generator.max_gen_len = 1
        _, lls, _ = self.generator.generate(prompts)
        results = []
        for ll in lls:
            results.append((ll.sum().item(),))
        self.generator.max_gen_len = max_gen_len

        return results


def eval_on_val(generator, val_args: ValidationArgs, train_cfg):
    srcs = {}
    for src in val_args.sources:
        path = os.path.join(val_args.root_dir, src)
        srcs[path] = 1.0
    for src in train_cfg.data.sources:
        path = os.path.join(train_cfg.data.root_dir, src)
        srcs[path] = 1.0

    multi_state = init_choice_state(
        "", srcs, 0, get_global_rank(), get_world_size(), "*.val.jsonl"
    )
    path_to_iter = setup_sources(multi_state)

    max_gen_len = generator.max_gen_len
    # We temporarily lower max gen len
    generator.max_gen_len = 1

    all_val_metrics = {}
    for src in path_to_iter:
        jsonl_iterator = path_to_iter[src]
        texts = []
        logger.info(f"Running validation on {src}...")
        for step, (content, state) in enumerate(jsonl_iterator):
            if state["current_iter"] > 0 or (
                val_args.max_steps is not None and step >= val_args.max_steps
            ):
                break
            content_key = "text" if ("text" in content) else "content"
            texts.append(content[content_key])

        _, loglikelihood, _ = generator.generate(texts)

        metrics = defaultdict(list)
        for i, ll in enumerate(loglikelihood):
            tmp = ll.sum().item()
            metrics["nll"].append(tmp)
            metrics["nll_per_token"].append(tmp / len(ll))
            metrics["nll_per_char"].append(tmp / len(texts[i]))

            metrics["avg_seqlen"].append(len(ll))

        for m in metrics:
            metrics[m] = sum(metrics[m]) / len(metrics[m])
        metrics.update(dist_mean_dict(metrics))
        logger.info(f"Validation on {src} done. Metrics: {metrics}")

        name = os.path.basename(src)
        if name in all_val_metrics:
            logger.warning(
                f"Duplicate source name {name}, path {src} in validation sources, renaming to {name}_1"
            )
            name = f"{name}_1"
        all_val_metrics[name] = metrics

    generator.max_gen_len = max_gen_len

    return all_val_metrics


def launch_eval(cfg: EvalArgs):
    if not torch.distributed.is_initialized():
        setup_torch_distributed(DistributedArgs())
    if (
        Path(cfg.ckpt_dir).exists()
        and (Path(cfg.ckpt_dir) / "params.json").exists()
        and next(Path(cfg.ckpt_dir).glob("*.pth"), None) is not None
    ):
        consolidate_path = Path(cfg.ckpt_dir)
    else:
        consolidate_path = Path(cfg.ckpt_dir) / CONSOLIDATE_FOLDER
        if not consolidate_path.exists() and get_global_rank() == 0:
            consolidate_path = consolidate_checkpoints(cfg.ckpt_dir)

    Path(cfg.dump_dir).mkdir(parents=True, exist_ok=True)
    dump_config(cfg, Path(cfg.dump_dir) / "config.yaml", log_config=False)

    consolidate_path = str(consolidate_path)
    torch.distributed.barrier()
    logger.info("Loading model")
    model, tokenizer, train_cfg = load_consolidated_model_and_tokenizer(
        consolidate_path,
        model_cls=LMTransformer,
        model_args_cls=LMTransformerArgs,
    )
    logger.info("Model loaded")
    model.eval()
    generator = PackedCausalTransformerGenerator(cfg.generator, model, tokenizer)

    wrap = EvalHarnessLM(generator)
    results = simple_evaluate(wrap, **asdict(cfg.harness))
    val_results = None
    if cfg.validation:
        val_results = eval_on_val(generator, cfg.validation, train_cfg)
    if get_global_rank() == 0:
        with open(Path(cfg.dump_dir) / "results.json", "w") as f:
            f.write(json.dumps(results))
        logger.info(f"All evaluation results: {results['results']}")
        if val_results is not None:
            with open(Path(cfg.dump_dir) / "validation.json", "w") as f:
                f.write(json.dumps(val_results))
            logger.info(f"All validation results: {val_results}")
    if cfg.metric_log_dir and get_global_rank() == 0:
        metric_log_path = Path(cfg.metric_log_dir) / "metrics.eval.jsonl"

        logger.info(f"Writing metric logs to {metric_log_path}")
        timestamp = {
            "created_at": datetime.utcnow().isoformat(),
        }
        if cfg.global_step is not None:
            timestamp["global_step"] = cfg.global_step
        print(
            json.dumps(timestamp | results["results"]),
            file=open(metric_log_path, mode="a"),
            flush=True,
        )

        val_log_path = Path(cfg.metric_log_dir) / "metrics.validation.jsonl"
        if val_results is not None:
            print(
                json.dumps(timestamp | val_results),
                file=open(val_log_path, mode="a"),
                flush=True,
            )

    del generator


def main():
    """
    The command line interface here uses OmegaConf https://omegaconf.readthedocs.io/en/2.3_branch/usage.html#from-command-line-arguments
    This accepts arguments as a dot list
    So if the dataclass looks like

    @dataclass
    class DummyArgs:
        name: str
        model: LMTransformerArgsgs

    @dataclass
    class LMTransformerArgsgs:
        dim: int

    Then you can pass model.dim=32 to change values in LMTransformerArgsgs
    or just name=tictac for top level attributes.

    The behavior here is as follows:
    1. We instantiate EvalArgs with its default values
    2. We override those default values with the ones in the provided config file
    3. We override the result with the additional arguments provided through command line

    For example, if the config is the following

    model:
        dim: 128
        n_layers: 4

    and you call eval.py with eval.py model.dim=64

    Then the final TrainArgs will have

    model:
        dim: 64
        n_layers: 4

    Plus all the default values in EvalArgs dataclass.
    """
    cli_args = OmegaConf.from_cli()
    file_cfg = OmegaConf.load(cli_args.config)
    # We remove 'config' attribute from config as the underlying DataClass does not have it
    del cli_args.config

    default_cfg = OmegaConf.structured(EvalArgs())
    cfg = OmegaConf.merge(default_cfg, file_cfg, cli_args)
    cfg = OmegaConf.to_object(cfg)
    launch_eval(cfg)


if __name__ == "__main__":
    main()