Spaces:
Running
on
Zero
Running
on
Zero
File size: 11,899 Bytes
bcc039b |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 |
# Copyright (c) Meta Platforms, Inc. and affiliates.
import json
import logging
import os
from collections import defaultdict
from dataclasses import asdict, dataclass, field
from datetime import datetime
from pathlib import Path
from typing import Any, List, Optional, Tuple, Union
import torch
from lingua.args import dump_config
from lingua.data import init_choice_state, setup_sources
from lm_eval import simple_evaluate
from lm_eval.api.instance import Instance
from lm_eval.api.model import LM
from omegaconf import OmegaConf
from bytelatent.checkpoint import CONSOLIDATE_FOLDER, consolidate_checkpoints
from bytelatent.distributed import (
DistributedArgs,
dist_mean_dict,
get_global_rank,
get_world_size,
setup_torch_distributed,
)
from bytelatent.transformer import LMTransformer, LMTransformerArgs
from apps.main.generate import (
PackedCausalTransformerGenerator,
PackedCausalTransformerGeneratorArgs,
load_consolidated_model_and_tokenizer,
)
EVAL_FOLDER_NAME = "{:010d}"
logger = logging.getLogger()
@dataclass
class LMHarnessArgs:
tasks: Optional[List[Any]] = None
num_fewshot: Optional[int] = None
device: Optional[str] = None
use_cache: Optional[str] = None
cache_requests: bool = False
rewrite_requests_cache: bool = False
delete_requests_cache: bool = False
limit: Optional[Union[int, float]] = None
bootstrap_iters: int = 100000
check_integrity: bool = False
write_out: bool = False
log_samples: bool = True
system_instruction: Optional[str] = None
apply_chat_template: Union[bool, str] = False
fewshot_as_multiturn: bool = False
gen_kwargs: Optional[str] = None
verbosity: str = "INFO"
predict_only: bool = False
random_seed: int = 0
numpy_random_seed: int = 1234
torch_random_seed: int = 1234
fewshot_random_seed: int = 1234
@dataclass
class ValidationArgs:
max_steps: Optional[int] = (
None # If None the whole validation file is used -> /!\ This number of steps is gpu dependent (100 max steps on 8 gpus = 800 steps on 1 gpu)
)
use_val_from_train_src: bool = True # Use the validation set from training sources
root_dir: str = ""
sources: List[str] = field(default_factory=list) # Other sources to eval on
@dataclass
class EvalArgs:
name: str = "evals"
dump_dir: Optional[str] = None
metric_log_dir: Optional[str] = None
ckpt_dir: str = ""
generator: PackedCausalTransformerGeneratorArgs = field(
default_factory=PackedCausalTransformerGeneratorArgs
)
harness: Optional[LMHarnessArgs] = field(default_factory=LMHarnessArgs)
validation: Optional[ValidationArgs] = field(default_factory=ValidationArgs)
wandb: Optional[Any] = None
global_step: Optional[int] = None # for in-training evaluation
def all_dicts_same(dict_list):
if not dict_list: # Check if the list is empty
return True
# Compare each dictionary to the first one
first_dict = dict_list[0]
return all(d == first_dict for d in dict_list)
class MockAccelerator:
def gather(self, tensor):
l = [torch.zeros_like(tensor) for _ in range(get_world_size())]
torch.distributed.all_gather(l, tensor)
return torch.stack(l)
def wait_for_everyone(self):
torch.distributed.barrier()
# Light wrapper around generator for lm-eval harness
class EvalHarnessLM(LM):
def __init__(self, generator):
super().__init__()
self.generator = generator
self.accelerator = MockAccelerator()
self._rank = get_global_rank()
self._world_size = get_world_size()
self.device = generator.device
def generate_until(self, requests: List[Instance]) -> List[str]:
prompts, gen_args = zip(*[req.args for req in requests])
assert all_dicts_same(gen_args), "Doesn't support different gen args for now"
gen_args = gen_args[0]
temperature = gen_args.get("temperature", 0.0)
top_p = gen_args.get("top_p", None)
top_k = gen_args.get("top_k", None)
until = gen_args.get("until", [])
self.generator.temperature = temperature
self.generator.top_p = top_p
self.generator.top_k = top_k
self.generator.until = until
generations, _, _ = self.generator.generate(prompts)
filtered_gen = []
for g in generations:
for e in until:
g = g.replace(e, "")
filtered_gen.append(g)
return filtered_gen
def loglikelihood(self, requests: List[Instance]) -> List[Tuple[float, bool]]:
prompts, continuations = zip(*[req.args for req in requests])
inputs = [req.args[0] + req.args[1] for req in requests]
max_gen_len = self.generator.max_gen_len
# We temporarily lower max gen len
self.generator.max_gen_len = 1
_, lls, greedy = self.generator.generate(inputs)
results = []
for p, ll, gr in zip(prompts, lls, greedy):
p_len = len(
self.generator.tokenizer.encode(p, add_bos=False, add_eos=False)
)
results.append((ll[p_len:].sum().item(), gr[p_len:].all().item()))
self.generator.max_gen_len = max_gen_len
return results
def loglikelihood_rolling(self, requests: List[Instance]) -> List[float]:
prompts = [req.args[0] for req in requests]
max_gen_len = self.generator.max_gen_len
# We temporarily lower max gen len
self.generator.max_gen_len = 1
_, lls, _ = self.generator.generate(prompts)
results = []
for ll in lls:
results.append((ll.sum().item(),))
self.generator.max_gen_len = max_gen_len
return results
def eval_on_val(generator, val_args: ValidationArgs, train_cfg):
srcs = {}
for src in val_args.sources:
path = os.path.join(val_args.root_dir, src)
srcs[path] = 1.0
for src in train_cfg.data.sources:
path = os.path.join(train_cfg.data.root_dir, src)
srcs[path] = 1.0
multi_state = init_choice_state(
"", srcs, 0, get_global_rank(), get_world_size(), "*.val.jsonl"
)
path_to_iter = setup_sources(multi_state)
max_gen_len = generator.max_gen_len
# We temporarily lower max gen len
generator.max_gen_len = 1
all_val_metrics = {}
for src in path_to_iter:
jsonl_iterator = path_to_iter[src]
texts = []
logger.info(f"Running validation on {src}...")
for step, (content, state) in enumerate(jsonl_iterator):
if state["current_iter"] > 0 or (
val_args.max_steps is not None and step >= val_args.max_steps
):
break
content_key = "text" if ("text" in content) else "content"
texts.append(content[content_key])
_, loglikelihood, _ = generator.generate(texts)
metrics = defaultdict(list)
for i, ll in enumerate(loglikelihood):
tmp = ll.sum().item()
metrics["nll"].append(tmp)
metrics["nll_per_token"].append(tmp / len(ll))
metrics["nll_per_char"].append(tmp / len(texts[i]))
metrics["avg_seqlen"].append(len(ll))
for m in metrics:
metrics[m] = sum(metrics[m]) / len(metrics[m])
metrics.update(dist_mean_dict(metrics))
logger.info(f"Validation on {src} done. Metrics: {metrics}")
name = os.path.basename(src)
if name in all_val_metrics:
logger.warning(
f"Duplicate source name {name}, path {src} in validation sources, renaming to {name}_1"
)
name = f"{name}_1"
all_val_metrics[name] = metrics
generator.max_gen_len = max_gen_len
return all_val_metrics
def launch_eval(cfg: EvalArgs):
if not torch.distributed.is_initialized():
setup_torch_distributed(DistributedArgs())
if (
Path(cfg.ckpt_dir).exists()
and (Path(cfg.ckpt_dir) / "params.json").exists()
and next(Path(cfg.ckpt_dir).glob("*.pth"), None) is not None
):
consolidate_path = Path(cfg.ckpt_dir)
else:
consolidate_path = Path(cfg.ckpt_dir) / CONSOLIDATE_FOLDER
if not consolidate_path.exists() and get_global_rank() == 0:
consolidate_path = consolidate_checkpoints(cfg.ckpt_dir)
Path(cfg.dump_dir).mkdir(parents=True, exist_ok=True)
dump_config(cfg, Path(cfg.dump_dir) / "config.yaml", log_config=False)
consolidate_path = str(consolidate_path)
torch.distributed.barrier()
logger.info("Loading model")
model, tokenizer, train_cfg = load_consolidated_model_and_tokenizer(
consolidate_path,
model_cls=LMTransformer,
model_args_cls=LMTransformerArgs,
)
logger.info("Model loaded")
model.eval()
generator = PackedCausalTransformerGenerator(cfg.generator, model, tokenizer)
wrap = EvalHarnessLM(generator)
results = simple_evaluate(wrap, **asdict(cfg.harness))
val_results = None
if cfg.validation:
val_results = eval_on_val(generator, cfg.validation, train_cfg)
if get_global_rank() == 0:
with open(Path(cfg.dump_dir) / "results.json", "w") as f:
f.write(json.dumps(results))
logger.info(f"All evaluation results: {results['results']}")
if val_results is not None:
with open(Path(cfg.dump_dir) / "validation.json", "w") as f:
f.write(json.dumps(val_results))
logger.info(f"All validation results: {val_results}")
if cfg.metric_log_dir and get_global_rank() == 0:
metric_log_path = Path(cfg.metric_log_dir) / "metrics.eval.jsonl"
logger.info(f"Writing metric logs to {metric_log_path}")
timestamp = {
"created_at": datetime.utcnow().isoformat(),
}
if cfg.global_step is not None:
timestamp["global_step"] = cfg.global_step
print(
json.dumps(timestamp | results["results"]),
file=open(metric_log_path, mode="a"),
flush=True,
)
val_log_path = Path(cfg.metric_log_dir) / "metrics.validation.jsonl"
if val_results is not None:
print(
json.dumps(timestamp | val_results),
file=open(val_log_path, mode="a"),
flush=True,
)
del generator
def main():
"""
The command line interface here uses OmegaConf https://omegaconf.readthedocs.io/en/2.3_branch/usage.html#from-command-line-arguments
This accepts arguments as a dot list
So if the dataclass looks like
@dataclass
class DummyArgs:
name: str
model: LMTransformerArgsgs
@dataclass
class LMTransformerArgsgs:
dim: int
Then you can pass model.dim=32 to change values in LMTransformerArgsgs
or just name=tictac for top level attributes.
The behavior here is as follows:
1. We instantiate EvalArgs with its default values
2. We override those default values with the ones in the provided config file
3. We override the result with the additional arguments provided through command line
For example, if the config is the following
model:
dim: 128
n_layers: 4
and you call eval.py with eval.py model.dim=64
Then the final TrainArgs will have
model:
dim: 64
n_layers: 4
Plus all the default values in EvalArgs dataclass.
"""
cli_args = OmegaConf.from_cli()
file_cfg = OmegaConf.load(cli_args.config)
# We remove 'config' attribute from config as the underlying DataClass does not have it
del cli_args.config
default_cfg = OmegaConf.structured(EvalArgs())
cfg = OmegaConf.merge(default_cfg, file_cfg, cli_args)
cfg = OmegaConf.to_object(cfg)
launch_eval(cfg)
if __name__ == "__main__":
main()
|