Spaces:
Running
on
Zero
Running
on
Zero
File size: 14,982 Bytes
bcc039b 7517ac2 bcc039b 7517ac2 bcc039b 82ab593 7044771 7517ac2 bcc039b 7517ac2 bcc039b 7517ac2 bcc039b 7044771 bcc039b 7517ac2 bcc039b 7044771 bcc039b 7044771 bcc039b 7044771 bcc039b 7517ac2 bcc039b 7517ac2 bcc039b 7517ac2 bcc039b 7517ac2 bcc039b 7517ac2 bcc039b 7044771 7517ac2 bcc039b 7517ac2 7044771 bcc039b 7044771 bcc039b 7044771 bcc039b 7044771 7517ac2 bcc039b 7044771 bcc039b 7044771 bcc039b 7517ac2 bcc039b 7044771 bcc039b 7517ac2 7044771 7517ac2 7044771 bcc039b 7517ac2 bcc039b 7044771 bcc039b 7517ac2 7044771 bcc039b 7044771 7517ac2 bcc039b 7517ac2 7044771 bcc039b 7517ac2 7044771 bcc039b |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 |
# Copyright (c) Meta Platforms, Inc. and affiliates.
import json
import logging
import math
import os
from collections import defaultdict
from datetime import datetime
import torch
from lm_eval import simple_evaluate
from lm_eval.api.instance import Instance
from lm_eval.api.model import LM
from rich.progress import track
from torch.nn import functional as F
from bytelatent.args import (
EvalArgs,
TrainArgs,
ValidationArgs,
find_and_sanitize_chunks,
)
from bytelatent.checkpoint import CONSOLIDATE_FOLDER, consolidate_checkpoints
from bytelatent.config_parser import parse_args_to_pydantic_model
from bytelatent.data.file_util import get_fs
from bytelatent.data.iterators.arrow_iterator import ArrowFileIterator
from bytelatent.data.iterators.limit_iterator import LimitIterator
from bytelatent.data.iterators.packing_iterator import (
PackingArgs,
PackingIterator,
PackingMode,
)
from bytelatent.data.iterators.preprocess_iterator import PreprocessIterator
from bytelatent.data.iterators.sequence_iterator import (
SequenceIterator,
SequencePackingArgs,
)
from bytelatent.data.patcher import PatcherArgs, PatchingModeEnum
from bytelatent.distributed import (
DistributedArgs,
dist_mean_dict,
dist_sum,
get_device_mesh,
get_global_rank,
get_world_size,
setup_torch_distributed,
to_py_num,
)
from bytelatent.generate import (
PackedCausalTransformerGenerator,
load_consolidated_model_and_tokenizer,
)
from bytelatent.model.blt import ByteLatentTransformer
from bytelatent.tokenizers.build_tokenizer import TokenizerArgs
from bytelatent.transformer import LMTransformer
EVAL_FOLDER_NAME = "{:010d}"
logger = logging.getLogger()
def all_dicts_same(dict_list):
if not dict_list: # Check if the list is empty
return True
# Compare each dictionary to the first one
first_dict = dict_list[0]
return all(d == first_dict for d in dict_list)
class MockAccelerator:
def gather(self, tensor):
l = [torch.zeros_like(tensor) for _ in range(get_world_size())]
torch.distributed.all_gather(l, tensor)
return torch.stack(l)
def wait_for_everyone(self):
torch.distributed.barrier()
# Light wrapper around generator for lm-eval harness
class EvalHarnessLM(LM):
def __init__(self, generator):
super().__init__()
self.generator = generator
self.accelerator = MockAccelerator()
self._rank = get_global_rank()
self._world_size = get_world_size()
self.device = generator.device
def generate_until(self, requests: list[Instance]) -> list[str]:
prompts, gen_args = zip(*[req.args for req in requests])
assert all_dicts_same(gen_args), "Doesn't support different gen args for now"
gen_args = gen_args[0]
temperature = gen_args.get("temperature", 0.0)
top_p = gen_args.get("top_p", None)
top_k = gen_args.get("top_k", None)
until = gen_args.get("until", [])
self.generator.temperature = temperature
self.generator.top_p = top_p
self.generator.top_k = top_k
self.generator.until = until
generations, _, _ = self.generator.generate(prompts)
filtered_gen = []
for g in generations:
for e in until:
g = g.replace(e, "")
filtered_gen.append(g)
return filtered_gen
def loglikelihood(self, requests: list[Instance]) -> list[tuple[float, bool]]:
prompts, continuations = zip(*[req.args for req in requests])
inputs = [req.args[0] + req.args[1] for req in requests]
max_gen_len = self.generator.max_gen_len
# We temporarily lower max gen len
self.generator.max_gen_len = 1
_, lls, greedy = self.generator.generate(inputs)
results = []
for p, ll, gr in zip(prompts, lls, greedy):
p_len = len(
self.generator.tokenizer.encode(p, add_bos=False, add_eos=False)
)
results.append((ll[p_len:].sum().item(), gr[p_len:].all().item()))
self.generator.max_gen_len = max_gen_len
return results
def loglikelihood_rolling(self, requests: list[Instance]) -> list[float]:
prompts = [req.args[0] for req in requests]
max_gen_len = self.generator.max_gen_len
# We temporarily lower max gen len
self.generator.max_gen_len = 1
_, lls, _ = self.generator.generate(prompts)
results = []
for ll in lls:
results.append((ll.sum().item(),))
self.generator.max_gen_len = max_gen_len
return results
@torch.no_grad()
def eval_ppl_on_path(
*,
world_rank: int,
world_size: int,
model: LMTransformer | ByteLatentTransformer,
tokenizer_args: TokenizerArgs,
patcher_args: PatcherArgs,
add_patches: bool,
path: str,
batch_size: int,
arrow_batch_size: int,
max_n_docs: int | None,
s3_profile: str | None = None,
):
model.eval()
tokenizer = tokenizer_args.build()
seq_len = model.get_output_seq_len()
chunks = find_and_sanitize_chunks(
path,
world_size=1,
file_pattern="*.val.jsonl",
s3_profile=s3_profile,
)
assert (
len(chunks) == 1
), f"There should be only 1 chunk per validation file, but found: {chunks}"
chunk = chunks[0]
arrow_iterator = ArrowFileIterator(
file_path=chunk,
preprocess_dir=None,
entropy_model_name=None,
worker_id=world_rank,
num_workers=world_size,
arrow_batch_size=arrow_batch_size,
s3_profile=s3_profile,
file_format="json",
)
if max_n_docs is not None:
arrow_iterator = LimitIterator(arrow_iterator, limit=max_n_docs)
preprocess_iterator = PreprocessIterator(
arrow_iterator,
patcher_args=patcher_args,
tokenizer_args=tokenizer_args,
add_patches=add_patches,
)
sequence_iterator = SequenceIterator(
preprocess_iterator,
sequence_packing_args=SequencePackingArgs(
output_seq_len=seq_len,
# Effectively disables shuffles
buffer_size=1,
),
rng_state=None,
)
packing_args = PackingArgs(
batch_size=batch_size,
seq_len=seq_len,
# TODO: make these seq lens worth with blt
max_length=seq_len,
pad_to_max_length=True,
enable_byte_ngrams=False,
pad_id=tokenizer.boe_id,
packing_mode=PackingMode.BYTES,
)
packing_iterator = PackingIterator(sequence_iterator, packing_args=packing_args)
total_loss = 0.0
n_bytes = 0
batch_iterator = packing_iterator.create_iter()
for batch in batch_iterator:
x = torch.from_numpy(batch.x).cuda()
y = torch.from_numpy(batch.y).cuda()
mask = None if batch.mask is None else torch.from_numpy(batch.mask).cuda()
if tokenizer_args.name in ["bytes", "blt"]:
n_bytes += y.numel() if mask is None else mask.sum().item()
pred = model(x)
loss = F.cross_entropy(pred.flatten(0, 1), y.flatten(0, 1), reduction="sum")
total_loss += loss.item()
else:
raise NotImplementedError()
all_n_bytes = to_py_num(dist_sum(n_bytes))
all_total_loss = to_py_num(dist_sum(total_loss))
return {
"n_bytes": all_n_bytes,
"n_bytes_gpu": n_bytes,
"loss_sum": all_total_loss,
"loss_sum_gpu": total_loss,
"loss_mean": all_total_loss / all_n_bytes,
"loss_mean_gpu": total_loss / n_bytes,
"ppl": math.exp(all_total_loss / all_n_bytes) if all_n_bytes > 0 else 0.0,
"bpb": all_total_loss / math.log(2) / all_n_bytes,
}
def eval_on_val(generator, val_args: ValidationArgs, train_cfg: TrainArgs):
srcs = []
for src in val_args.sources:
path = os.path.join(val_args.root_dir, src)
srcs.append(path)
for src in train_cfg.data.sources:
path = os.path.join(train_cfg.data.root_dir, src)
srcs.append(path)
path_to_iter = {}
for path in srcs:
chunks = find_and_sanitize_chunks(
path,
world_size=1,
file_pattern="*.val.jsonl",
s3_profile=train_cfg.data.s3_profile,
)
assert (
len(chunks) == 1
), f"There should be only 1 chunk per validation file, but found: {chunks}"
chunk = chunks[0]
iterator = ArrowFileIterator(
dataset_files=[chunk],
file_path=None,
preprocess_dir=None,
entropy_model_name=None,
worker_id=0,
num_workers=1,
arrow_batch_size=train_cfg.data.arrow_batch_size,
s3_profile=train_cfg.data.s3_profile,
file_format="json",
)
path_to_iter[path] = iterator
max_gen_len = generator.max_gen_len
# We temporarily lower max gen len
generator.max_gen_len = 1
all_val_metrics = {}
for src in path_to_iter:
example_iterator = path_to_iter[src].create_iter()
texts = []
logger.info(f"Running validation on {src}...")
for step, example in enumerate(example_iterator):
texts.append(example.text)
_, loglikelihood, _ = generator.generate(texts)
metrics = defaultdict(list)
for i, ll in enumerate(loglikelihood):
tmp = ll.sum().item()
metrics["nll"].append(tmp)
metrics["nll_per_token"].append(tmp / len(ll))
metrics["nll_per_char"].append(tmp / len(texts[i]))
metrics["avg_seqlen"].append(len(ll))
for m in metrics:
metrics[m] = sum(metrics[m]) / len(metrics[m])
metrics.update(dist_mean_dict(metrics))
logger.info(f"Validation on {src} done. Metrics: {metrics}")
name = os.path.basename(src)
if name in all_val_metrics:
logger.warning(
f"Duplicate source name {name}, path {src} in validation sources, renaming to {name}_1"
)
name = f"{name}_1"
all_val_metrics[name] = metrics
generator.max_gen_len = max_gen_len
return all_val_metrics
def launch_eval(eval_args: EvalArgs):
assert eval_args.dump_dir is not None
assert eval_args.ckpt_dir is not None
distributed_args = DistributedArgs()
distributed_args.configure_world()
if not torch.distributed.is_initialized():
setup_torch_distributed(distributed_args)
world_mesh = get_device_mesh(distributed_args)
dp_mesh = world_mesh["dp_replicate"]
assert distributed_args.dp_shard == 1
world_size = dp_mesh.size()
world_rank = dp_mesh.get_local_rank()
fs = get_fs(eval_args.ckpt_dir, s3_profile=eval_args.s3_profile)
if (
fs.exists(eval_args.ckpt_dir)
and fs.exists(os.path.join(eval_args.ckpt_dir, "params.json"))
and len(fs.glob(os.path.join(eval_args.ckpt_dir, "*.pth"))) != 0
):
consolidate_path = eval_args.ckpt_dir
else:
consolidate_path = os.path.join(eval_args.ckpt_dir, CONSOLIDATE_FOLDER)
if not fs.exists(consolidate_path) and get_global_rank() == 0:
consolidate_path = consolidate_checkpoints(fs, eval_args.ckpt_dir)
fs.mkdirs(eval_args.dump_dir, exist_ok=True)
with fs.open(os.path.join(eval_args.dump_dir, "config.yaml"), "w") as f:
f.write(eval_args.model_dump_json())
torch.distributed.barrier()
logger.info("Loading model")
# TODO: Make this general so that it works with either
# LMTransformer or Blt, similar with args
model, tokenizer, train_cfg = load_consolidated_model_and_tokenizer(
consolidate_path,
)
model.eval()
logger.info("Model loaded")
ppl_results = None
if eval_args.run_ppl:
assert eval_args.validation is not None
if len(eval_args.validation.sources) > 0:
ppl_results = {}
logger.info("Starting PPL evaluation on validation sets")
for source in eval_args.validation.sources:
ppl_results[source] = eval_ppl_on_path(
world_rank=world_rank,
world_size=world_size,
model=model,
tokenizer_args=train_cfg.data.tokenizer_args,
# TODO: Don't hardcode, modify based on model
patcher_args=PatcherArgs(patching_mode=PatchingModeEnum.byte),
add_patches=False,
path=os.path.join(eval_args.validation.root_dir, source),
max_n_docs=eval_args.validation.max_n_docs,
batch_size=8,
arrow_batch_size=100,
s3_profile="blt",
)
task_results = None
if eval_args.run_tasks:
assert eval_args.generator is not None
assert eval_args.harness is not None
generator = PackedCausalTransformerGenerator(
eval_args.generator, model, tokenizer
)
wrap = EvalHarnessLM(generator)
# TODO: This needs to be checked/sped up
task_results = simple_evaluate(wrap, **eval_args.harness.model_dump())
results = {"ppl": ppl_results, "tasks": task_results}
# TODO: Serial and Parallel yield slightly different number of bytes, debug this later,
# leaving this log statement here to help with that.
# logging.info("Rank: %s Results: %s", world_rank, results)
if get_global_rank() == 0:
with fs.open(os.path.join(eval_args.dump_dir, "results.json"), "w") as f:
f.write(json.dumps(results))
logger.info(f"All evaluation results: {results}")
if ppl_results is not None:
with fs.open(os.path.join(eval_args.dump_dir, "validation.json"), "w") as f:
f.write(json.dumps(ppl_results))
logger.info(f"All validation results: {ppl_results}")
if eval_args.metric_log_dir and get_global_rank() == 0:
metric_log_path = os.path.join(eval_args.metric_log_dir, "metrics.eval.jsonl")
logger.info(f"Writing metric logs to {metric_log_path}")
timestamp: dict[str, int | str] = {
"created_at": datetime.utcnow().isoformat(),
}
if eval_args.global_step is not None:
timestamp["global_step"] = eval_args.global_step
print(
json.dumps(timestamp | results),
file=fs.open(metric_log_path, mode="a"),
flush=True,
)
val_log_path = os.path.join(
eval_args.metric_log_dir, "metrics.validation.jsonl"
)
if ppl_results is not None:
print(
json.dumps(timestamp | ppl_results),
file=fs.open(val_log_path, mode="a"),
flush=True,
)
def main():
eval_args = parse_args_to_pydantic_model(EvalArgs)
launch_eval(eval_args)
if __name__ == "__main__":
main()
|