Spaces:
Running
on
Zero
Running
on
Zero
| # Copyright (c) Meta Platforms, Inc. and affiliates. | |
| import abc | |
| import logging | |
| import os | |
| from enum import Enum | |
| from typing import Optional, Tuple, Union | |
| import torch | |
| from pydantic import BaseModel, ConfigDict | |
| from torch import nn | |
| from torch.nn import functional as F | |
| from torch.nn.attention.flex_attention import ( | |
| BlockMask, | |
| _mask_mod_signature, | |
| flex_attention, | |
| ) | |
| from xformers.ops import AttentionBias, fmha | |
| from bytelatent.tokenizers.constants import EOS_ID | |
| logger = logging.getLogger() | |
| try: | |
| from apex.normalization.fused_layer_norm import FusedRMSNorm | |
| RMSNorm = FusedRMSNorm | |
| except (ImportError, ModuleNotFoundError): | |
| logging.debug("Apex not found. Using nn.RMSNorm") | |
| RMSNorm = nn.RMSNorm | |
| if int(os.environ.get("BLT_ALLOW_MISSING_FLEX_ATTENTION", False)) == 0: | |
| flex_attention_comp = torch.compile(flex_attention) | |
| else: | |
| flex_attention_comp = None | |
| class InitStdFactor(Enum): | |
| DISABLED = "disabled" # Init std is divided by 1.0 | |
| GLOBAL_DEPTH = "global_depth" # Init std is divided by sqrt(2*n_layers) | |
| CURRENT_DEPTH = "current_depth" # Init std is divided by sqrt(2*depth) | |
| DIM_RATIO = "dim_ratio" # Init std is divided by model_dim/4096 | |
| class BaseTransformerArgs(BaseModel): | |
| model_config = ConfigDict(extra="forbid") | |
| dim: int = 512 | |
| n_layers: int = 8 | |
| head_dim: int | None = None | |
| n_heads: int | None = None | |
| n_kv_heads: int | None = None | |
| ffn_dim_multiplier: float | None = None | |
| multiple_of: int = 256 | |
| norm_eps: float = 1e-5 | |
| rope_theta: float = 10000.0 | |
| rope_use_fp32_in_outer_product: bool = False | |
| init_base_std: float | None = None | |
| init_std_factor: InitStdFactor = InitStdFactor.DISABLED | |
| max_seqlen: int = 1024 | |
| attn_impl: str | None = "sdpa" | |
| attn_bias_type: str | None = None | |
| # Special token config | |
| eos_id: int | None = EOS_ID | |
| def cross_entropy(pred, target, **kwargs): | |
| return F.nll_loss( | |
| F.log_softmax(pred.flatten(end_dim=-2).float(), -1), | |
| target.flatten(end_dim=-1), | |
| **kwargs, | |
| ) | |
| def repeat_kv(x: torch.Tensor, n_rep: int, dim: int) -> torch.Tensor: | |
| """torch.repeat_interleave(x, dim=2, repeats=n_rep)""" | |
| assert dim == 2, "Only dim=2 is supported. Check the implementation for other dims." | |
| bs, slen, n_kv_heads, head_dim = x.shape | |
| if n_rep == 1: | |
| return x | |
| return ( | |
| x[:, :, :, None, :] | |
| .expand(bs, slen, n_kv_heads, n_rep, head_dim) | |
| .reshape(bs, slen, n_kv_heads * n_rep, head_dim) | |
| ) | |
| def precompute_freqs_cis( | |
| dim: int, | |
| end: int, | |
| theta: float = 10000.0, | |
| rope_use_fp32_in_outer_product: bool = False, | |
| ): | |
| """ | |
| Precompute the frequency tensor for complex exponentials (cis) with given dimensions. | |
| This function calculates a frequency tensor with complex exponentials using the given dimension 'dim' | |
| and the end index 'end'. The 'theta' parameter scales the frequencies. | |
| The returned tensor contains complex values in complex64 data type. | |
| Args: | |
| dim (int): Dimension of the frequency tensor. | |
| end (int): End index for precomputing frequencies. | |
| theta (float, optional): Scaling factor for frequency computation. Defaults to 10000.0. | |
| Returns: | |
| torch.Tensor: Precomputed frequency tensor with complex exponentials. | |
| """ | |
| freqs = 1.0 / (theta ** (torch.arange(0, dim, 2)[: (dim // 2)].float() / dim)) | |
| t = torch.arange(end, device=freqs.device) | |
| if rope_use_fp32_in_outer_product: | |
| t = t.to(torch.float32) | |
| freqs = torch.outer(t, freqs).float() | |
| cos, sin = freqs.cos(), freqs.sin() | |
| return torch.stack((cos, -sin, sin, cos), dim=-1).view(*freqs.size(), 2, 2) | |
| def reshape_for_broadcast(freqs_cis: torch.Tensor, x: torch.Tensor, seq_dim: int): | |
| """ | |
| Reshape frequency tensor for broadcasting it with another tensor. | |
| This function reshapes the frequency tensor to have the same shape as the target tensor 'x' | |
| for the purpose of broadcasting the frequency tensor during element-wise operations. | |
| Args: | |
| freqs_cis (torch.Tensor): Frequency tensor to be reshaped. | |
| x (torch.Tensor): Target tensor for broadcasting compatibility. | |
| seq_dim (int): Sequence dimension index. | |
| Returns: | |
| torch.Tensor: Reshaped frequency tensor. | |
| """ | |
| ndim = x.ndim | |
| assert 0 <= seq_dim < ndim | |
| assert freqs_cis.shape == ( | |
| x.shape[seq_dim], | |
| x.shape[-3], | |
| 2, | |
| 2, | |
| ), f"freqs_cis vs x: {(freqs_cis.shape, x.shape)}" | |
| shape = [ | |
| d if i == seq_dim or i == ndim - 3 else 1 for i, d in enumerate(x.shape[:-2]) | |
| ] + [2, 2] | |
| return freqs_cis.view(*shape) | |
| def apply_rotary_emb( | |
| xq: torch.Tensor, | |
| xk: torch.Tensor, | |
| seq_dim: int, | |
| freqs_cis: torch.Tensor, | |
| ) -> Tuple[torch.Tensor, torch.Tensor]: | |
| xq_ = xq.reshape(*xq.shape[:-1], -1, 1, 2) # B S H D -> B S H D/2 1 2 | |
| xk_ = xk.reshape(*xk.shape[:-1], -1, 1, 2) # B S H D -> B S H D/2 1 2 | |
| freqs_cis = reshape_for_broadcast( | |
| freqs_cis, xq_, seq_dim | |
| ).float() # S D/2 2 2 -> 1 S 1 D/2 2 2 | |
| xq_out = (xq_ * freqs_cis).sum(5).flatten(3) | |
| xk_out = (xk_ * freqs_cis).sum(5).flatten(3) | |
| return xq_out.type_as(xq), xk_out.type_as(xk) | |
| def causal_mask(b, h, q_idx, kv_idx): | |
| return q_idx >= kv_idx | |
| def lengths_to_start_ids(lengths): | |
| doc_start = lengths.cumsum(0) | |
| doc_start = doc_start.roll(1) | |
| doc_start[0] = 0 | |
| return doc_start | |
| def lengths_to_local_ids(lengths): | |
| assert lengths.ndim == 1 | |
| nb_seqs = lengths.size(0) | |
| total_seqlen = lengths.sum() | |
| # This gives the document id of each token | |
| doc_id = torch.repeat_interleave(lengths) | |
| # Compute document start for each document | |
| doc_start = lengths_to_start_ids(lengths) | |
| # Compute document start for each token | |
| doc_start = doc_start[doc_id] | |
| # Compute the position of each token within each document | |
| tok_id = torch.arange(total_seqlen, device=lengths.device) - doc_start | |
| return doc_id, tok_id | |
| def generate_doc_mask_mod( | |
| mask_mod: _mask_mod_signature, | |
| lengths: torch.Tensor, | |
| kv_lengths: Optional[torch.Tensor] = None, | |
| ) -> _mask_mod_signature: | |
| """Generates mask mods that apply to inputs to flex attention in the sequence stacked | |
| format. | |
| Args: | |
| mask_mod: The mask mod to apply to the documents | |
| lengths: Lengths of each document | |
| Note: | |
| What is the sequence stacked format? When assembling batches of inputs, we | |
| take multiple sequences and stack them together to form 1 large sequence. We then | |
| use masking to ensure that the attention scores are only applied to tokens within | |
| the same document. | |
| Example: | |
| - Square mask | |
| doc_mask lengths | |
| a a b b b c c 2 3 2 | |
| a 1 0 0 0 0 0 0 | |
| a 1 1 0 0 0 0 0 | |
| b 0 0 1 0 0 0 0 | |
| b 0 0 1 1 0 0 0 | |
| b 0 0 1 1 1 0 0 | |
| c 0 0 0 0 0 1 0 | |
| c 0 0 0 0 0 1 1 | |
| """ | |
| kv_lengths = kv_lengths if kv_lengths is not None else lengths | |
| q_document_id, q_token_id = lengths_to_local_ids(lengths) | |
| kv_document_id, kv_token_id = lengths_to_local_ids(kv_lengths) | |
| q_max_idx = lengths.sum() - 1 | |
| kv_max_idx = kv_lengths.sum() - 1 | |
| def doc_mask_mod(b, h, q_idx, kv_idx): | |
| q_idx_cap = torch.minimum(q_max_idx, q_idx) | |
| kv_idx_cap = torch.minimum(kv_max_idx, kv_idx) | |
| valid_idx = (q_idx <= q_max_idx) & (kv_idx <= kv_max_idx) | |
| same_doc = q_document_id[q_idx_cap] == kv_document_id[kv_idx_cap] | |
| q_logical = q_token_id[q_idx_cap] | |
| kv_logical = kv_token_id[kv_idx_cap] | |
| inner_mask = mask_mod(b, h, q_logical, kv_logical) | |
| return same_doc & inner_mask & valid_idx | |
| return doc_mask_mod | |
| # Rotary embedding as in xformer, see if torchtrain implementation is not better. Also might be usefull to make it work with batch*seqlen collapsed. | |
| class RotaryEmbedding(torch.nn.Module): | |
| """ | |
| RotaryEmbedding Module | |
| """ | |
| def __init__( | |
| self, | |
| theta: float, | |
| head_dim: int, | |
| max_seqlen: int = 1024, | |
| rope_use_fp32_in_outer_product: bool = False, | |
| ): | |
| super().__init__() | |
| self.theta = theta | |
| self.head_dim = head_dim | |
| self.max_seqlen = max_seqlen | |
| self.rope_use_fp32_in_outer_product = rope_use_fp32_in_outer_product | |
| self.register_buffer( | |
| "freqs_cis", | |
| precompute_freqs_cis( | |
| dim=head_dim, | |
| end=max_seqlen, | |
| theta=theta, | |
| rope_use_fp32_in_outer_product=self.rope_use_fp32_in_outer_product, | |
| ), | |
| persistent=False, | |
| ) | |
| def reset_parameters(self): | |
| self.freqs_cis[...] = precompute_freqs_cis( | |
| dim=self.head_dim, | |
| end=self.max_seqlen, | |
| theta=self.theta, | |
| rope_use_fp32_in_outer_product=self.rope_use_fp32_in_outer_product, | |
| ) | |
| def forward( | |
| self, seqlen: Optional[int] = None, tok_idx: Optional[torch.Tensor] = None | |
| ): | |
| """ | |
| Return freqs_cis corresponding to consecutive seqlen positions or the corresponding tok_idx positions | |
| Args: | |
| seqlen (int): Contiguous sequence length | |
| tok_idx (torch.Tensor[int]): Position indices of each token this overrides seqlen | |
| Returns: | |
| Tuple(torch.Tensor, torch.Tensor): Embedded input tensor and freqs_cis | |
| """ | |
| test = (seqlen is not None) or (tok_idx is not None) | |
| assert test, "Should provide atleast seqlen or tok_idx" | |
| if tok_idx is not None: | |
| return self.freqs_cis[tok_idx] | |
| elif seqlen is not None: | |
| return self.freqs_cis[0:seqlen] | |
| def _reshape_for_attn_bias( | |
| attn_bias: AttentionBias | None, | |
| *tensors: torch.Tensor, | |
| ) -> list[torch.Tensor]: | |
| to_transform = list(tensors) | |
| if isinstance(attn_bias, fmha.attn_bias.BlockDiagonalCausalMask): | |
| # could be `view` instead of reshape during training, but for inference | |
| # have to reshape due to strides mismatch | |
| to_transform = [t.reshape(1, -1, *t.shape[2:]) for t in to_transform] | |
| return to_transform | |
| class Attention(nn.Module): | |
| def __init__( | |
| self, | |
| dim: int, | |
| head_dim: int, | |
| n_heads: int, | |
| n_kv_heads: int, | |
| rope_theta: float, | |
| ): | |
| super().__init__() | |
| self.dim = dim | |
| self.head_dim = head_dim | |
| self.rope_theta = rope_theta | |
| self.n_heads = n_heads | |
| self.n_kv_heads = n_kv_heads | |
| self.heads_per_group = self.n_heads // self.n_kv_heads | |
| self.wq = nn.Linear( | |
| dim, | |
| n_heads * head_dim, | |
| bias=False, | |
| ) | |
| self.wk = nn.Linear( | |
| dim, | |
| n_kv_heads * head_dim, | |
| bias=False, | |
| ) | |
| self.wv = nn.Linear( | |
| dim, | |
| n_kv_heads * head_dim, | |
| bias=False, | |
| ) | |
| self.wo = nn.Linear( | |
| n_heads * head_dim, | |
| dim, | |
| bias=False, | |
| ) | |
| def forward( | |
| self, | |
| x: torch.Tensor, | |
| freq_cis: torch.Tensor, | |
| tok_idx: Optional[torch.Tensor] = None, | |
| mask: Optional[Union[BlockMask, AttentionBias, str]] = None, | |
| attn_impl: str = "sdpa", | |
| ) -> torch.Tensor: | |
| # B S D | |
| bsz, seq_len, dim = x.shape | |
| xq = self.wq(x.view_as(x)) | |
| xk = self.wk(x.view_as(x)) | |
| xv = self.wv(x.view_as(x)) | |
| output_shape = xq.shape | |
| # B S D -> B S H D | |
| xq = xq.view(bsz, seq_len, self.n_heads, self.head_dim) | |
| xk = xk.view(bsz, seq_len, self.n_kv_heads, self.head_dim) | |
| xv = xv.view(bsz, seq_len, self.n_kv_heads, self.head_dim) | |
| xq, xk = apply_rotary_emb(xq, xk, 1, freq_cis[0:seq_len]) | |
| # This condition helps us be easily compatible | |
| # with inference by adding a pluggable KVCache | |
| if hasattr(self, "kv_cache"): | |
| xk, xv = self.kv_cache.update(xk, xv, tok_idx) | |
| xk = repeat_kv(xk, self.heads_per_group, dim=2) | |
| xv = repeat_kv(xv, self.heads_per_group, dim=2) | |
| if attn_impl == "flex_attention": | |
| assert mask is None or isinstance(mask, BlockMask) | |
| xq, xk, xv = map(lambda e: e.transpose(1, 2), (xq, xk, xv)) | |
| output = flex_attention_comp(xq, xk, xv, block_mask=mask) | |
| output = output.transpose(1, 2).contiguous() # B H S D -> B S H D | |
| elif attn_impl == "xformers": | |
| assert mask is None or isinstance(mask, AttentionBias) | |
| query_shape = xq.shape | |
| xq, xk, xv = _reshape_for_attn_bias(mask, xq, xk, xv) | |
| output = fmha.memory_efficient_attention(xq, xk, xv, attn_bias=mask) | |
| output = output.view(query_shape) | |
| # This uses B S H D instead of B H S D of pytorch | |
| elif attn_impl == "sdpa": | |
| xq, xk, xv = map(lambda e: e.transpose(1, 2), (xq, xk, xv)) | |
| assert mask is None or isinstance(mask, (str, torch.Tensor)) | |
| is_causal = (mask == "causal") if isinstance(mask, str) else False | |
| mask = mask if isinstance(mask, torch.Tensor) else None | |
| output = F.scaled_dot_product_attention( | |
| xq, | |
| xk, | |
| xv, | |
| is_causal=is_causal, | |
| attn_mask=mask, | |
| ) | |
| output = output.transpose(1, 2).contiguous() # B H S D -> B S H D | |
| else: | |
| raise NotImplementedError( | |
| f"Attention implementation {attn_impl} not supported" | |
| ) | |
| output = self.wo(output.reshape(output_shape)) | |
| return output | |
| def reset_parameters(self, init_std=None, factor=1.0): | |
| init_std = init_std or (self.dim ** (-0.5)) / factor | |
| for w in [self.wq, self.wk, self.wv]: | |
| nn.init.trunc_normal_( | |
| w.weight, | |
| mean=0.0, | |
| std=init_std, | |
| a=-3 * init_std, | |
| b=3 * init_std, | |
| ) | |
| nn.init.trunc_normal_( | |
| self.wo.weight, | |
| mean=0.0, | |
| std=init_std, | |
| a=-3 * init_std, | |
| b=3 * init_std, | |
| ) | |
| class FeedForward(nn.Module): | |
| def __init__( | |
| self, | |
| dim: int, | |
| hidden_dim: int, | |
| multiple_of: int, | |
| ffn_dim_multiplier: Optional[float], | |
| mp_size: int = 1, | |
| ): | |
| super().__init__() | |
| hidden_dim = int(2 * hidden_dim / 3) | |
| if ffn_dim_multiplier is not None: | |
| hidden_dim = int(ffn_dim_multiplier * hidden_dim) | |
| hidden_dim = multiple_of * ((hidden_dim + multiple_of - 1) // multiple_of) | |
| assert hidden_dim % mp_size == 0 | |
| self.dim = dim | |
| self.hidden_dim = hidden_dim | |
| self.w1 = nn.Linear( | |
| dim, | |
| hidden_dim, | |
| bias=False, | |
| ) | |
| self.w3 = nn.Linear( | |
| dim, | |
| hidden_dim, | |
| bias=False, | |
| ) | |
| self.w2 = nn.Linear( | |
| hidden_dim, | |
| dim, | |
| bias=False, | |
| ) | |
| def forward(self, x: torch.Tensor) -> torch.Tensor: | |
| # B S D | |
| x1 = self.w1(x.view_as(x)) | |
| x3 = self.w3(x.view_as(x)) | |
| output = self.w2(F.silu(x1) * x3) | |
| return output | |
| def reset_parameters(self, init_std=None, factor=1.0): | |
| in_init_std = init_std or (self.dim ** (-0.5)) / factor | |
| out_init_std = init_std or (self.hidden_dim ** (-0.5)) / factor | |
| nn.init.trunc_normal_( | |
| self.w1.weight, | |
| mean=0.0, | |
| std=in_init_std, | |
| a=-3 * in_init_std, | |
| b=3 * in_init_std, | |
| ) | |
| nn.init.trunc_normal_( | |
| self.w2.weight, | |
| mean=0.0, | |
| std=out_init_std, | |
| a=-3 * out_init_std, | |
| b=3 * out_init_std, | |
| ) | |
| nn.init.trunc_normal_( | |
| self.w3.weight, | |
| mean=0.0, | |
| std=in_init_std, | |
| a=-3 * in_init_std, | |
| b=3 * in_init_std, | |
| ) | |
| class TransformerBlock(nn.Module): | |
| def __init__(self, args: BaseTransformerArgs): | |
| super().__init__() | |
| assert (args.head_dim is not None) or ( | |
| args.n_heads is not None | |
| ), "Should specify at least head_dim or n_heads" | |
| self.head_dim = args.head_dim or args.dim // args.n_heads | |
| self.n_heads = args.n_heads or args.dim // args.head_dim | |
| self.n_kv_heads = args.n_kv_heads or self.n_heads | |
| assert args.n_heads % self.n_kv_heads == 0 | |
| assert args.dim % args.n_heads == 0 | |
| self.attention = Attention( | |
| dim=args.dim, | |
| head_dim=self.head_dim, | |
| n_heads=self.n_heads, | |
| n_kv_heads=self.n_kv_heads, | |
| rope_theta=args.rope_theta, | |
| ) | |
| self.feed_forward = FeedForward( | |
| dim=args.dim, | |
| hidden_dim=4 * args.dim, | |
| multiple_of=args.multiple_of, | |
| ffn_dim_multiplier=args.ffn_dim_multiplier, | |
| ) | |
| self.attention_norm = RMSNorm(args.dim, eps=args.norm_eps) | |
| self.ffn_norm = RMSNorm(args.dim, eps=args.norm_eps) | |
| def forward( | |
| self, | |
| x: torch.Tensor, | |
| freq_cis: torch.Tensor, | |
| tok_idx: Optional[torch.Tensor] = None, | |
| mask: Optional[Union[BlockMask, AttentionBias, str]] = None, | |
| attn_impl: str = "sdpa", | |
| ) -> torch.Tensor: | |
| attn_out = self.attention( | |
| self.attention_norm(x), | |
| freq_cis, | |
| tok_idx=tok_idx, | |
| mask=mask, | |
| attn_impl=attn_impl, | |
| ) | |
| h = x + attn_out | |
| h_norm = self.ffn_norm(h) | |
| out = h + self.feed_forward(h_norm) | |
| return out | |
| def init_weights(self, init_std=None, factor=1.0): | |
| self.attention.reset_parameters(init_std, factor) | |
| self.attention_norm.reset_parameters() | |
| self.feed_forward.reset_parameters(init_std, factor) | |
| self.ffn_norm.reset_parameters() | |
| class SequenceModelWithOutput(abc.ABC): | |
| def get_output_seq_len(self) -> int: | |
| pass | |
| class BaseTransformer(nn.Module, SequenceModelWithOutput): | |
| def __init__(self, args: BaseTransformerArgs): | |
| super().__init__() | |
| self.dim = args.dim | |
| self.init_base_std = args.init_base_std | |
| self.attn_impl = args.attn_impl | |
| self.attn_bias_type = args.attn_bias_type | |
| self.init_std_factor = InitStdFactor(args.init_std_factor) | |
| self.max_seqlen = args.max_seqlen | |
| self.rope_embeddings = RotaryEmbedding( | |
| theta=args.rope_theta, | |
| head_dim=args.head_dim or args.dim // args.n_heads, | |
| max_seqlen=args.max_seqlen, | |
| rope_use_fp32_in_outer_product=args.rope_use_fp32_in_outer_product, | |
| ) | |
| self.eos_id = args.eos_id | |
| self.layers = nn.ModuleList() | |
| for _ in range(args.n_layers): | |
| self.layers.append(TransformerBlock(args)) | |
| def get_output_seq_len(self): | |
| return self.max_seqlen | |
| def forward( | |
| self, | |
| h, | |
| tok_idx: Optional[torch.Tensor] = None, | |
| mask: Optional[Union[BlockMask, AttentionBias, str]] = None, | |
| attn_impl: str = "sdpa", | |
| ): | |
| freq_cis = self.rope_embeddings(seqlen=self.max_seqlen, tok_idx=tok_idx) | |
| for i, layer in enumerate(self.layers): | |
| h = layer(h, freq_cis, tok_idx=tok_idx, mask=mask, attn_impl=attn_impl) | |
| return h | |
| def init_weights(self): | |
| self.rope_embeddings.reset_parameters() | |
| for depth, layer in enumerate(self.layers): | |
| factor = { | |
| InitStdFactor.CURRENT_DEPTH: (2 * (depth + 1)) ** 0.5, | |
| InitStdFactor.GLOBAL_DEPTH: (2 * (len(self.layers) + 1)) ** 0.5, | |
| InitStdFactor.DIM_RATIO: self.dim / 4096, | |
| InitStdFactor.DISABLED: 1.0, | |
| }[self.init_std_factor] | |
| layer.init_weights(self.init_base_std, factor) | |