Spaces:
Running
on
Zero
Running
on
Zero
Patches
Browse files
app.py
CHANGED
|
@@ -1,6 +1,7 @@
|
|
| 1 |
import os
|
| 2 |
import gradio as gr
|
| 3 |
import torch
|
|
|
|
| 4 |
|
| 5 |
from bytelatent.data.file_util import get_fs
|
| 6 |
from bytelatent.generate_patcher import patcher_nocache
|
|
@@ -12,16 +13,78 @@ from download_blt_weights import main as ensure_present
|
|
| 12 |
# --- Global Setup (Consider loading models outside if necessary) ---
|
| 13 |
# Kept inside the function for simplicity as before.
|
| 14 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 15 |
def process_text(prompt: str, model_name: str = "blt-1b"):
|
| 16 |
"""
|
| 17 |
-
Processes the input prompt using the ByteLatent model and returns
|
|
|
|
| 18 |
|
| 19 |
Args:
|
| 20 |
prompt: The input text string from the Gradio interface.
|
| 21 |
model_name: The name of the model to use.
|
| 22 |
|
| 23 |
Returns:
|
| 24 |
-
A
|
|
|
|
|
|
|
|
|
|
| 25 |
"""
|
| 26 |
try:
|
| 27 |
# --- Model and Tokenizer Loading ---
|
|
@@ -63,55 +126,69 @@ def process_text(prompt: str, model_name: str = "blt-1b"):
|
|
| 63 |
|
| 64 |
if not results:
|
| 65 |
print("Processing returned no results.")
|
| 66 |
-
return "Processing completed, but no results were generated."
|
| 67 |
|
| 68 |
batch_patch_lengths, batch_scores, batch_tokens = results
|
| 69 |
-
|
| 70 |
-
|
| 71 |
-
|
| 72 |
-
|
| 73 |
-
|
| 74 |
-
|
| 75 |
-
|
| 76 |
-
|
| 77 |
-
|
| 78 |
-
|
| 79 |
-
)
|
| 80 |
-
|
| 81 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 82 |
# --- End Processing ---
|
| 83 |
|
| 84 |
-
return fig
|
| 85 |
|
| 86 |
except FileNotFoundError as e:
|
| 87 |
print(f"Error: {e}")
|
| 88 |
-
|
| 89 |
-
return f"Error: {str(e)}" # Return error as text output
|
| 90 |
except Exception as e:
|
| 91 |
print(f"An unexpected error occurred: {e}")
|
| 92 |
import traceback
|
| 93 |
traceback.print_exc()
|
| 94 |
-
|
| 95 |
-
|
| 96 |
-
|
| 97 |
-
|
| 98 |
-
|
| 99 |
-
|
| 100 |
-
|
| 101 |
-
|
| 102 |
-
|
| 103 |
-
),
|
| 104 |
-
|
| 105 |
-
|
| 106 |
-
|
| 107 |
-
allow_flagging="never",
|
| 108 |
-
)
|
| 109 |
|
| 110 |
with gr.Blocks() as iface:
|
| 111 |
gr.Markdown("# ByteLatent Entropy Visualizer") # Title
|
| 112 |
gr.Markdown(
|
| 113 |
"Process any prompt (limited to 512 bytes) with the 100M entropy patcher model "
|
| 114 |
-
"and visualize the token entropies plot below.<br><br>" # Updated description
|
| 115 |
"NOTE: this implementation differs slightly by excluding local attention so we limit "
|
| 116 |
"the characters limit to 512 to avoid any deviation.",
|
| 117 |
line_breaks=True
|
|
@@ -121,20 +198,33 @@ with gr.Blocks() as iface:
|
|
| 121 |
prompt_input = gr.Textbox(
|
| 122 |
label="Input Prompt",
|
| 123 |
value="Daenerys Targaryen is in Game of Thrones, a fantasy epic by George R.R. Martin.",
|
| 124 |
-
placeholder="
|
| 125 |
-
max_length=512
|
|
|
|
| 126 |
)
|
| 127 |
-
submit_button = gr.Button("Generate
|
| 128 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 129 |
|
| 130 |
-
# Define the action
|
| 131 |
submit_button.click(
|
| 132 |
fn=process_text,
|
| 133 |
-
inputs=prompt_input,
|
| 134 |
-
outputs=plot_output
|
| 135 |
)
|
| 136 |
|
| 137 |
# --- Launch the Gradio App ---
|
| 138 |
if __name__ == "__main__":
|
| 139 |
-
ensure_present(["blt-1b"])
|
| 140 |
iface.launch()
|
|
|
|
| 1 |
import os
|
| 2 |
import gradio as gr
|
| 3 |
import torch
|
| 4 |
+
import itertools # Import itertools for color cycling
|
| 5 |
|
| 6 |
from bytelatent.data.file_util import get_fs
|
| 7 |
from bytelatent.generate_patcher import patcher_nocache
|
|
|
|
| 13 |
# --- Global Setup (Consider loading models outside if necessary) ---
|
| 14 |
# Kept inside the function for simplicity as before.
|
| 15 |
|
| 16 |
+
# Define colors for patches (similar to the image style)
|
| 17 |
+
# Using colors from a qualitative colormap (e.g., Colorbrewer Set3 or Paired)
|
| 18 |
+
PATCH_COLORS = [
|
| 19 |
+
"#a6cee3", "#1f78b4", "#b2df8a", "#33a02c", "#fb9a99", "#e31a1c",
|
| 20 |
+
"#fdbf6f", "#ff7f00", "#cab2d6", "#6a3d9a", "#ffff99", "#b15928"
|
| 21 |
+
] # Add more if you expect many patches
|
| 22 |
+
|
| 23 |
+
|
| 24 |
+
def create_highlighted_text_data(tokenizer, patch_lengths_tensor, tokens_tensor, colors):
|
| 25 |
+
"""
|
| 26 |
+
Generates the data structure needed for gr.HighlightedText based on patches.
|
| 27 |
+
|
| 28 |
+
Args:
|
| 29 |
+
tokenizer: The BltTokenizer instance.
|
| 30 |
+
patch_lengths_tensor: Tensor containing the length of each patch (in tokens).
|
| 31 |
+
tokens_tensor: Tensor containing the token IDs for the entire sequence.
|
| 32 |
+
colors: A list of color hex codes to cycle through.
|
| 33 |
+
|
| 34 |
+
Returns:
|
| 35 |
+
A list of tuples for gr.HighlightedText, e.g., [(text, label), ...].
|
| 36 |
+
Returns None if input tensors are invalid.
|
| 37 |
+
"""
|
| 38 |
+
if patch_lengths_tensor is None or tokens_tensor is None or patch_lengths_tensor.numel() == 0:
|
| 39 |
+
return None
|
| 40 |
+
|
| 41 |
+
patch_lengths = patch_lengths_tensor.tolist()
|
| 42 |
+
all_tokens = tokens_tensor.tolist()
|
| 43 |
+
highlighted_data = []
|
| 44 |
+
current_token_index = 0
|
| 45 |
+
color_cycler = itertools.cycle(colors) # Use itertools to cycle through colors
|
| 46 |
+
|
| 47 |
+
for i, length in enumerate(patch_lengths):
|
| 48 |
+
if length <= 0: # Skip empty patches if they somehow occur
|
| 49 |
+
continue
|
| 50 |
+
patch_token_ids = all_tokens[current_token_index : current_token_index + length]
|
| 51 |
+
if not patch_token_ids: # Should not happen if length > 0, but good practice
|
| 52 |
+
continue
|
| 53 |
+
|
| 54 |
+
patch_text = tokenizer.decode(patch_token_ids)
|
| 55 |
+
patch_label = f"Patch {i+1}" # Unique label for each patch
|
| 56 |
+
patch_color = next(color_cycler) # Get the next color
|
| 57 |
+
|
| 58 |
+
# Add to highlighted_data: (text, label_for_coloring)
|
| 59 |
+
highlighted_data.append((patch_text, patch_label))
|
| 60 |
+
current_token_index += length
|
| 61 |
+
|
| 62 |
+
# Check if all tokens were consumed (optional sanity check)
|
| 63 |
+
if current_token_index != len(all_tokens):
|
| 64 |
+
print(f"Warning: Token mismatch. Consumed {current_token_index}, total {len(all_tokens)}")
|
| 65 |
+
# Decode any remaining tokens if necessary, though this indicates a logic issue
|
| 66 |
+
remaining_tokens = all_tokens[current_token_index:]
|
| 67 |
+
if remaining_tokens:
|
| 68 |
+
remaining_text = tokenizer.decode(remaining_tokens)
|
| 69 |
+
highlighted_data.append((remaining_text, "Remainder")) # Assign a generic label
|
| 70 |
+
|
| 71 |
+
return highlighted_data
|
| 72 |
+
|
| 73 |
+
|
| 74 |
def process_text(prompt: str, model_name: str = "blt-1b"):
|
| 75 |
"""
|
| 76 |
+
Processes the input prompt using the ByteLatent model and returns
|
| 77 |
+
an entropy plot and color-coded text data.
|
| 78 |
|
| 79 |
Args:
|
| 80 |
prompt: The input text string from the Gradio interface.
|
| 81 |
model_name: The name of the model to use.
|
| 82 |
|
| 83 |
Returns:
|
| 84 |
+
A tuple containing:
|
| 85 |
+
- Matplotlib Figure for the entropy plot (or None on error).
|
| 86 |
+
- List of tuples for gr.HighlightedText (or None on error/no results).
|
| 87 |
+
- Error message string (or None if successful).
|
| 88 |
"""
|
| 89 |
try:
|
| 90 |
# --- Model and Tokenizer Loading ---
|
|
|
|
| 126 |
|
| 127 |
if not results:
|
| 128 |
print("Processing returned no results.")
|
| 129 |
+
return None, None, "Processing completed, but no results were generated."
|
| 130 |
|
| 131 |
batch_patch_lengths, batch_scores, batch_tokens = results
|
| 132 |
+
|
| 133 |
+
# Process the first (and only) result in the batch
|
| 134 |
+
patch_lengths = batch_patch_lengths[0]
|
| 135 |
+
scores = batch_scores[0]
|
| 136 |
+
tokens = batch_tokens[0]
|
| 137 |
+
|
| 138 |
+
# Decode the full output once for the plot labels (if needed by plot_entropies)
|
| 139 |
+
# Note: BltTokenizer might decode directly to bytes, then utf-8. Ensure it handles errors.
|
| 140 |
+
try:
|
| 141 |
+
# Using the raw tokens tensor for decoding consistency
|
| 142 |
+
decoded_output_for_plot = tokenizer.decode(tokens.tolist())
|
| 143 |
+
except Exception as decode_err:
|
| 144 |
+
print(f"Warning: Error decoding full sequence for plot: {decode_err}")
|
| 145 |
+
# Fallback: attempt to decode the original prompt if possible, or use generic labels
|
| 146 |
+
decoded_output_for_plot = prompt # Use original prompt as fallback
|
| 147 |
+
|
| 148 |
+
# Generate the plot
|
| 149 |
+
fig = plot_entropies(
|
| 150 |
+
patch_lengths,
|
| 151 |
+
scores,
|
| 152 |
+
decoded_output_for_plot, # Pass the decoded string for plot labels
|
| 153 |
+
threshold=patcher.threshold
|
| 154 |
+
)
|
| 155 |
+
|
| 156 |
+
# Generate data for HighlightedText
|
| 157 |
+
highlighted_data = create_highlighted_text_data(
|
| 158 |
+
tokenizer, patch_lengths, tokens, PATCH_COLORS
|
| 159 |
+
)
|
| 160 |
+
|
| 161 |
+
print("Processing and visualization data generation complete.")
|
| 162 |
# --- End Processing ---
|
| 163 |
|
| 164 |
+
return fig, highlighted_data, None # Return plot, highlighted text data, no error
|
| 165 |
|
| 166 |
except FileNotFoundError as e:
|
| 167 |
print(f"Error: {e}")
|
| 168 |
+
return None, None, f"Error: {str(e)}" # Return None for plot/text, error message
|
|
|
|
| 169 |
except Exception as e:
|
| 170 |
print(f"An unexpected error occurred: {e}")
|
| 171 |
import traceback
|
| 172 |
traceback.print_exc()
|
| 173 |
+
return None, None, f"An unexpected error occurred: {e}" # Return None for plot/text, error message
|
| 174 |
+
|
| 175 |
+
# --- Gradio Interface ---
|
| 176 |
+
|
| 177 |
+
# Create the color map for HighlightedText dynamically
|
| 178 |
+
# Generate enough patch labels and map them to the cycled colors
|
| 179 |
+
MAX_EXPECTED_PATCHES = 50 # Estimate a reasonable maximum
|
| 180 |
+
color_map = {
|
| 181 |
+
f"Patch {i+1}": color
|
| 182 |
+
for i, color in zip(range(MAX_EXPECTED_PATCHES), itertools.cycle(PATCH_COLORS))
|
| 183 |
+
}
|
| 184 |
+
# Add a color for the potential 'Remainder' label from create_highlighted_text_data
|
| 185 |
+
color_map["Remainder"] = "#808080" # Grey for any leftovers
|
|
|
|
|
|
|
| 186 |
|
| 187 |
with gr.Blocks() as iface:
|
| 188 |
gr.Markdown("# ByteLatent Entropy Visualizer") # Title
|
| 189 |
gr.Markdown(
|
| 190 |
"Process any prompt (limited to 512 bytes) with the 100M entropy patcher model "
|
| 191 |
+
"and visualize the token entropies plot and color-coded patches below.<br><br>" # Updated description
|
| 192 |
"NOTE: this implementation differs slightly by excluding local attention so we limit "
|
| 193 |
"the characters limit to 512 to avoid any deviation.",
|
| 194 |
line_breaks=True
|
|
|
|
| 198 |
prompt_input = gr.Textbox(
|
| 199 |
label="Input Prompt",
|
| 200 |
value="Daenerys Targaryen is in Game of Thrones, a fantasy epic by George R.R. Martin.",
|
| 201 |
+
placeholder="Enter text here...",
|
| 202 |
+
max_length=512,
|
| 203 |
+
lines=3
|
| 204 |
)
|
| 205 |
+
submit_button = gr.Button("Generate Visualization") # Update button text
|
| 206 |
+
|
| 207 |
+
# Output for error messages or status
|
| 208 |
+
status_output = gr.Textbox(label="Status", interactive=False)
|
| 209 |
+
|
| 210 |
+
# Output component for the color-coded text
|
| 211 |
+
highlighted_output = gr.HighlightedText(
|
| 212 |
+
label="Patched Text Visualization",
|
| 213 |
+
color_map=color_map,
|
| 214 |
+
show_legend=False # Show the patch labels and colors
|
| 215 |
+
)
|
| 216 |
+
|
| 217 |
+
# Output component for the plot
|
| 218 |
+
plot_output = gr.Plot(label="Entropy vs. Token Index (with Patch Threshold)")
|
| 219 |
|
| 220 |
+
# Define the action for the button click
|
| 221 |
submit_button.click(
|
| 222 |
fn=process_text,
|
| 223 |
+
inputs=prompt_input,
|
| 224 |
+
outputs=[plot_output, highlighted_output, status_output] # Order matters!
|
| 225 |
)
|
| 226 |
|
| 227 |
# --- Launch the Gradio App ---
|
| 228 |
if __name__ == "__main__":
|
| 229 |
+
ensure_present(["blt-1b"]) # Ensure model is present before launching
|
| 230 |
iface.launch()
|