Spaces:
Running
on
Zero
Running
on
Zero
Update app.py
Browse files
app.py
CHANGED
@@ -11,11 +11,8 @@ from src.data.single_video import SingleVideo
|
|
11 |
from src.data.utils_asr import PromptASR
|
12 |
from src.models.llama_inference import inference
|
13 |
from src.test.vidchapters import get_chapters
|
14 |
-
from src.utils import RankedLogger
|
15 |
from tools.download.models import download_model
|
16 |
|
17 |
-
log = RankedLogger(__name__, rank_zero_only=True)
|
18 |
-
|
19 |
# Set up proxies
|
20 |
# from urllib.request import getproxies
|
21 |
# proxies = getproxies()
|
@@ -37,7 +34,7 @@ def load_base_model():
|
|
37 |
global base_model, tokenizer
|
38 |
|
39 |
if base_model is None:
|
40 |
-
|
41 |
base_model = load_model_llamarecipes(
|
42 |
model_name=LLAMA_CKPT_PATH,
|
43 |
device_map="auto",
|
@@ -49,7 +46,7 @@ def load_base_model():
|
|
49 |
tokenizer = AutoTokenizer.from_pretrained(LLAMA_CKPT_PATH)
|
50 |
tokenizer.pad_token = tokenizer.eos_token
|
51 |
|
52 |
-
|
53 |
|
54 |
|
55 |
class FastLlamaInference:
|
@@ -120,11 +117,11 @@ def load_peft(model_name: str = "asr-10k"):
|
|
120 |
|
121 |
# Only load a new PEFT model if it's different from the current one
|
122 |
if current_peft_model != model_name:
|
123 |
-
|
124 |
model_path = download_model(model_name)
|
125 |
|
126 |
if not Path(model_path).exists():
|
127 |
-
|
128 |
return False
|
129 |
|
130 |
# Apply the PEFT model to the base model
|
@@ -136,7 +133,7 @@ def load_peft(model_name: str = "asr-10k"):
|
|
136 |
inference_model = FastLlamaInference(model=peft_model)
|
137 |
current_peft_model = model_name
|
138 |
|
139 |
-
|
140 |
return True
|
141 |
|
142 |
# Model already loaded
|
@@ -150,7 +147,7 @@ def download_from_url(url, output_path):
|
|
150 |
try:
|
151 |
import yt_dlp
|
152 |
except ImportError:
|
153 |
-
|
154 |
return (
|
155 |
False,
|
156 |
"yt-dlp Python package is not installed. Please install it with 'pip install yt-dlp'.",
|
@@ -178,7 +175,7 @@ def download_from_url(url, output_path):
|
|
178 |
return True, None
|
179 |
except Exception as e:
|
180 |
error_msg = f"Error downloading video: {str(e)}"
|
181 |
-
|
182 |
return False, error_msg
|
183 |
|
184 |
|
@@ -318,4 +315,4 @@ with gr.Blocks(title="Chapter-Llama") as demo:
|
|
318 |
|
319 |
if __name__ == "__main__":
|
320 |
# Launch the Gradio app
|
321 |
-
demo.launch()
|
|
|
11 |
from src.data.utils_asr import PromptASR
|
12 |
from src.models.llama_inference import inference
|
13 |
from src.test.vidchapters import get_chapters
|
|
|
14 |
from tools.download.models import download_model
|
15 |
|
|
|
|
|
16 |
# Set up proxies
|
17 |
# from urllib.request import getproxies
|
18 |
# proxies = getproxies()
|
|
|
34 |
global base_model, tokenizer
|
35 |
|
36 |
if base_model is None:
|
37 |
+
print(f"Loading base model: {LLAMA_CKPT_PATH}")
|
38 |
base_model = load_model_llamarecipes(
|
39 |
model_name=LLAMA_CKPT_PATH,
|
40 |
device_map="auto",
|
|
|
46 |
tokenizer = AutoTokenizer.from_pretrained(LLAMA_CKPT_PATH)
|
47 |
tokenizer.pad_token = tokenizer.eos_token
|
48 |
|
49 |
+
print("Base model loaded successfully")
|
50 |
|
51 |
|
52 |
class FastLlamaInference:
|
|
|
117 |
|
118 |
# Only load a new PEFT model if it's different from the current one
|
119 |
if current_peft_model != model_name:
|
120 |
+
print(f"Loading PEFT model: {model_name}")
|
121 |
model_path = download_model(model_name)
|
122 |
|
123 |
if not Path(model_path).exists():
|
124 |
+
print(f"PEFT model does not exist at {model_path}")
|
125 |
return False
|
126 |
|
127 |
# Apply the PEFT model to the base model
|
|
|
133 |
inference_model = FastLlamaInference(model=peft_model)
|
134 |
current_peft_model = model_name
|
135 |
|
136 |
+
print(f"PEFT model {model_name} loaded successfully")
|
137 |
return True
|
138 |
|
139 |
# Model already loaded
|
|
|
147 |
try:
|
148 |
import yt_dlp
|
149 |
except ImportError:
|
150 |
+
print("yt-dlp Python package is not installed")
|
151 |
return (
|
152 |
False,
|
153 |
"yt-dlp Python package is not installed. Please install it with 'pip install yt-dlp'.",
|
|
|
175 |
return True, None
|
176 |
except Exception as e:
|
177 |
error_msg = f"Error downloading video: {str(e)}"
|
178 |
+
print(error_msg)
|
179 |
return False, error_msg
|
180 |
|
181 |
|
|
|
315 |
|
316 |
if __name__ == "__main__":
|
317 |
# Launch the Gradio app
|
318 |
+
demo.launch()
|