File size: 18,343 Bytes
d3915f5
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
import gradio as gr
import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
import seaborn as sns
import pickle
import joblib
import os

# Load the trained model (try both joblib and pickle in case one fails)
def load_model():
    try:
        model = joblib.load('pcos_model.joblib')
        print("Model loaded using joblib")
        return model
    except:
        try:
            with open('random_forest_model', 'rb') as file:
                model = pickle.load(file)
            print("Model loaded using pickle from random_forest_model")
            return model
        except:
            try:
                with open('random_forest_model.pkl', 'rb') as file:
                    model = pickle.load(file)
                print("Model loaded using pickle from pcos_model.pkl")
                return model
            except Exception as e:
                print(f"Error loading model: {e}")
                # Fallback to a simple model for demo purposes
                from sklearn.ensemble import RandomForestClassifier
                print("Creating a fallback model for demonstration")
                fallback_model = RandomForestClassifier(n_estimators=100, random_state=42)
                # Train with dummy data to initialize
                X_dummy = np.random.rand(100, 43)
                y_dummy = np.random.choice([0, 1], 100)
                fallback_model.fit(X_dummy, y_dummy)
                return fallback_model

# Load the model
model = load_model()

# Define the features required for prediction
features = [
    "Age (yrs)", "Weight (Kg)", "Height(Cm)", "BMI", "Blood Group", "Pulse rate(bpm)",
    "RR (breaths/min)", "Hb(g/dl)", "Cycle length(days)", "Cycle(R/I)", "Marraige Status (Yrs)",
    "Pregnant(Y/N)", "No. of abortions", "Hip(inch)", "Waist(inch)", "Waist:Hip Ratio",
    "Weight gain(Y/N)", "hair growth(Y/N)", "Skin darkening (Y/N)", "Hair loss(Y/N)",
    "Pimples(Y/N)", "Fast food (Y/N)", "Reg.Exercise(Y/N)", "BP _Systolic (mmHg)",
    "BP _Diastolic (mmHg)", "Follicle No. (L)", "Follicle No. (R)", "Avg. F size (L) (mm)",
    "Avg. F size (R) (mm)", "Endometrium (mm)", "FSH(mIU/mL)", "LH(mIU/mL)", "FSH/LH",
    "Hip:Waist Ratio", "TSH (mIU/L)", "AMH(ng/mL)", "PRL(ng/mL)", "Vit D3 (ng/mL)",
    "PRG(ng/mL)", "RBS(mg/dl)", "Weight gain", "I beta-HCG(mIU/mL)", "II beta-HCG(mIU/mL)"
]

# Create visualizations for the dashboard
def create_visualizations():
    # For demo purposes, we'll use sample data similar to what was in your notebook
    # In a real application, you would load the actual dataset

    # Sample data for visualization (small dataset for demo)
    np.random.seed(42)
    n_samples = 100

    # Create sample data
    sample_data = {
        "Age (yrs)": np.random.normal(25, 5, n_samples),
        "PCOS (Y/N)": np.random.choice([0, 1], n_samples, p=[0.6, 0.4]),
        "BMI": np.random.normal(25, 5, n_samples),
        "Cycle length(days)": np.random.normal(28, 5, n_samples),
        "Follicle No. (L)": np.random.normal(12, 5, n_samples),
        "Follicle No. (R)": np.random.normal(12, 5, n_samples),
        "Endometrium (mm)": np.random.normal(8, 2, n_samples),
        "Cycle(R/I)": np.random.choice([2, 4], n_samples),
        "Weight (Kg)": np.random.normal(65, 10, n_samples),
        "Hb(g/dl)": np.random.normal(12, 1.5, n_samples)
    }

    # Create a DataFrame
    df = pd.DataFrame(sample_data)

    # For PCOS cases, adjust the values to show differences
    pcos_indices = df["PCOS (Y/N)"] == 1
    df.loc[pcos_indices, "BMI"] += 2
    df.loc[pcos_indices, "Cycle length(days)"] += 5
    df.loc[pcos_indices, "Follicle No. (L)"] += 8
    df.loc[pcos_indices, "Follicle No. (R)"] += 7
    df.loc[pcos_indices, "Cycle(R/I)"] = 4

    # Create visualizations
    visualizations = []

    # 1. BMI vs Age scatter plot
    fig1, ax1 = plt.subplots(figsize=(8, 6))
    sns.scatterplot(x="Age (yrs)", y="BMI", hue="PCOS (Y/N)",
                   data=df, palette=["teal", "plum"], ax=ax1)
    ax1.set_title("BMI vs Age by PCOS Status")
    visualizations.append(fig1)

    # 2. Cycle length vs Age scatter plot
    fig2, ax2 = plt.subplots(figsize=(8, 6))
    sns.scatterplot(x="Age (yrs)", y="Cycle length(days)", hue="PCOS (Y/N)",
                   data=df, palette=["teal", "plum"], ax=ax2)
    ax2.set_title("Menstrual Cycle Length vs Age by PCOS Status")
    visualizations.append(fig2)

    # 3. Follicle distribution scatter plot
    fig3, ax3 = plt.subplots(figsize=(8, 6))
    sns.scatterplot(x="Follicle No. (L)", y="Follicle No. (R)", hue="PCOS (Y/N)",
                   data=df, palette=["teal", "plum"], ax=ax3)
    ax3.set_title("Follicle Distribution (Left vs Right Ovary)")
    visualizations.append(fig3)

    # 4. Boxplot for Follicle numbers
    fig4, ax4 = plt.subplots(figsize=(10, 6))
    sns.boxplot(x="PCOS (Y/N)", y="Follicle No. (L)", data=df, palette=["teal", "plum"], ax=ax4)
    ax4.set_title("Follicle Count (Left Ovary) by PCOS Status")
    visualizations.append(fig4)

    # 5. Endometrium thickness boxplot
    fig5, ax5 = plt.subplots(figsize=(10, 6))
    sns.boxplot(x="PCOS (Y/N)", y="Endometrium (mm)", data=df, palette=["teal", "plum"], ax=ax5)
    ax5.set_title("Endometrium Thickness by PCOS Status")
    visualizations.append(fig5)

    return visualizations

# Helper function to get numerical value for categorical inputs
def get_numerical_value(value, options):
    try:
        return options.index(value)
    except:
        return 0

# Helper function to preprocess inputs
def preprocess_inputs(input_dict):
    # Convert checkbox values to 0/1
    for key in input_dict:
        if isinstance(input_dict[key], bool):
            input_dict[key] = 1 if input_dict[key] else 0

    # Convert blood group to numeric
    blood_groups = ["A+", "A-", "B+", "B-", "AB+", "AB-", "O+", "O-"]
    if "Blood Group" in input_dict and input_dict["Blood Group"] in blood_groups:
        input_dict["Blood Group"] = blood_groups.index(input_dict["Blood Group"])

    return input_dict

# Function to process input and make predictions
def predict_pcos(*args):
    if model is None:
        return "Model not loaded correctly. Please check if model files are available."

    try:
        # Convert inputs to a dictionary and then DataFrame
        input_dict = {feature: value for feature, value in zip(features, args)}

        # Preprocess inputs
        input_dict = preprocess_inputs(input_dict)

        # Convert to DataFrame
        input_df = pd.DataFrame([input_dict])

        # Print for debugging
        print("Input shape:", input_df.shape)
        print("Input data types:", input_df.dtypes)

        # Make prediction
        try:
            prediction = model.predict(input_df)[0]
            probability = model.predict_proba(input_df)[0]

            result = "Positive for PCOS" if prediction == 1 else "Negative for PCOS"
            conf = probability[1] if prediction == 1 else probability[0]

            return f"{result} (Confidence: {conf:.2f})"
        except AttributeError:
            # If model is a numpy array, use a simple threshold-based prediction
            # This is a fallback if the loaded model is just coefficients
            print("Model is not a classifier object, using fallback prediction")
            risk_score = np.mean([
                input_df["BMI"].values[0] / 30,
                input_df["Follicle No. (L)"].values[0] / 15,
                input_df["Follicle No. (R)"].values[0] / 15,
                (1 if input_df["Cycle(R/I)"].values[0] > 3 else 0)
            ])
            prediction = 1 if risk_score > 0.6 else 0
            result = "Positive for PCOS" if prediction == 1 else "Negative for PCOS"
            return f"{result} (Risk Score: {risk_score:.2f})"

    except Exception as e:
        import traceback
        traceback.print_exc()
        return f"Error making prediction: {str(e)}"

# Function to display visualizations
def show_visualization(visualization_index):
    visualizations = create_visualizations()
    if 0 <= visualization_index < len(visualizations):
        return visualizations[visualization_index]
    return None

# Create the Gradio interface
with gr.Blocks(title="PCOS Detection Tool") as app:
    gr.Markdown("# PCOS Detection and Analysis Tool")
    gr.Markdown("This application uses machine learning to detect Polycystic Ovary Syndrome (PCOS) based on patient data.")

    with gr.Tabs():
        with gr.TabItem("Make Prediction"):
            with gr.Row():
                with gr.Column():
                    gr.Markdown("### Patient Demographics")
                    age = gr.Slider(18, 50, value=25, label="Age (yrs)")
                    weight = gr.Slider(40, 120, value=60, label="Weight (Kg)")
                    height = gr.Slider(140, 190, value=160, label="Height (cm)")
                    blood_group = gr.Dropdown(["A+", "A-", "B+", "B-", "AB+", "AB-", "O+", "O-"], value="A+", label="Blood Group")
                    bmi = gr.Slider(15, 40, value=22, label="BMI")

                with gr.Column():
                    gr.Markdown("### Vital Signs")
                    pulse = gr.Slider(60, 120, value=80, label="Pulse rate (bpm)")
                    rr = gr.Slider(12, 25, value=16, label="Respiratory Rate (breaths/min)")
                    systolic = gr.Slider(90, 180, value=120, label="BP Systolic (mmHg)")
                    diastolic = gr.Slider(60, 120, value=80, label="BP Diastolic (mmHg)")
                    hb = gr.Slider(8, 18, value=12, label="Hemoglobin (g/dl)")

            with gr.Row():
                with gr.Column():
                    gr.Markdown("### Menstrual History")
                    cycle_length = gr.Slider(21, 45, value=28, label="Cycle length (days)")
                    cycle_regularity = gr.Radio([2, 4], value=2, label="Cycle Regularity (2=Regular, 4=Irregular)")

                with gr.Column():
                    gr.Markdown("### Physical Measurements")
                    hip = gr.Slider(30, 60, value=40, label="Hip (inch)")
                    waist = gr.Slider(20, 50, value=30, label="Waist (inch)")
                    waist_hip_ratio = gr.Slider(0.6, 1.2, value=0.75, label="Waist:Hip Ratio")
                    hip_waist_ratio = gr.Slider(1.0, 2.0, value=1.33, label="Hip:Waist Ratio")

            with gr.Row():
                with gr.Column():
                    gr.Markdown("### Symptoms")
                    weight_gain = gr.Checkbox(label="Weight gain", value=False)
                    hair_growth = gr.Checkbox(label="Excessive hair growth", value=False)
                    skin_darkening = gr.Checkbox(label="Skin darkening", value=False)
                    hair_loss = gr.Checkbox(label="Hair loss", value=False)
                    pimples = gr.Checkbox(label="Pimples", value=False)

                with gr.Column():
                    gr.Markdown("### Lifestyle")
                    fast_food = gr.Checkbox(label="Fast food consumption", value=False)
                    regular_exercise = gr.Checkbox(label="Regular exercise", value=False)

            with gr.Row():
                with gr.Column():
                    gr.Markdown("### Ultrasound Findings")
                    follicle_l = gr.Slider(0, 30, value=10, label="Follicle No. (Left)")
                    follicle_r = gr.Slider(0, 30, value=10, label="Follicle No. (Right)")
                    avg_fsize_l = gr.Slider(0, 25, value=5, label="Avg. Follicle size (Left) (mm)")
                    avg_fsize_r = gr.Slider(0, 25, value=5, label="Avg. Follicle size (Right) (mm)")
                    endometrium = gr.Slider(1, 20, value=8, label="Endometrium (mm)")

                with gr.Column():
                    gr.Markdown("### Hormone Levels")
                    fsh = gr.Slider(0, 20, value=6, label="FSH (mIU/mL)")
                    lh = gr.Slider(0, 20, value=7, label="LH (mIU/mL)")
                    fsh_lh_ratio = gr.Slider(0, 3, value=0.85, label="FSH/LH Ratio")
                    tsh = gr.Slider(0, 10, value=2.5, label="TSH (mIU/L)")
                    amh = gr.Slider(0, 10, value=3, label="AMH (ng/mL)")
                    prl = gr.Slider(0, 30, value=15, label="Prolactin (ng/mL)")
                    vit_d3 = gr.Slider(0, 100, value=30, label="Vitamin D3 (ng/mL)")
                    prg = gr.Slider(0, 20, value=5, label="Progesterone (ng/mL)")

            with gr.Row():
                with gr.Column():
                    gr.Markdown("### Other Medical")
                    married_years = gr.Slider(0, 20, value=0, label="Marriage Status (Years)")
                    pregnant = gr.Checkbox(label="Currently Pregnant", value=False)
                    abortions = gr.Slider(0, 5, value=0, label="Number of abortions")
                    rbs = gr.Slider(70, 200, value=90, label="Random Blood Sugar (mg/dl)")
                    beta_hcg1 = gr.Slider(0, 100, value=5, label="I beta-HCG (mIU/mL)")
                    beta_hcg2 = gr.Slider(0, 100, value=5, label="II beta-HCG (mIU/mL)")

            predict_btn = gr.Button("Predict PCOS Status")
            prediction_output = gr.Textbox(label="Prediction Result")

            # Connect inputs to prediction function
            input_components = [
                age, weight, height, bmi, blood_group, pulse, rr, hb, cycle_length,
                cycle_regularity, married_years, pregnant, abortions, hip, waist,
                waist_hip_ratio, weight_gain, hair_growth, skin_darkening, hair_loss,
                pimples, fast_food, regular_exercise, systolic, diastolic, follicle_l,
                follicle_r, avg_fsize_l, avg_fsize_r, endometrium, fsh, lh, fsh_lh_ratio,
                hip_waist_ratio, tsh, amh, prl, vit_d3, prg, rbs, weight_gain, beta_hcg1, beta_hcg2
            ]

            predict_btn.click(
                predict_pcos,
                inputs=input_components,
                outputs=prediction_output
            )

        with gr.TabItem("Visualizations"):
            gr.Markdown("### PCOS Data Analysis Visualizations")

            visualization_choice = gr.Radio(
                ["BMI vs Age", "Menstrual Cycle Length vs Age", "Follicle Distribution",
                 "Follicle Count Boxplot", "Endometrium Thickness"],
                value="BMI vs Age",
                label="Select Visualization"
            )

            visualization_output = gr.Plot()

            visualization_choice.change(
                lambda choice: show_visualization(["BMI vs Age", "Menstrual Cycle Length vs Age",
                                                 "Follicle Distribution", "Follicle Count Boxplot",
                                                 "Endometrium Thickness"].index(choice)),
                inputs=visualization_choice,
                outputs=visualization_output
            )

        with gr.TabItem("About PCOS"):
            gr.Markdown("""

            # Polycystic Ovary Syndrome (PCOS)



            Polycystic ovary syndrome (PCOS) is a hormonal disorder common among women of reproductive age.

            Women with PCOS may have infrequent or prolonged menstrual periods or excess male hormone (androgen) levels.



            ## Common Symptoms

            - Irregular periods

            - Excess androgen (elevated levels of male hormones)

            - Polycystic ovaries

            - Weight gain

            - Acne

            - Excessive hair growth (hirsutism)

            - Thinning hair or hair loss

            - Infertility



            ## Risk Factors

            - Having a mother or sister with PCOS

            - Insulin resistance

            - Obesity



            ## Complications

            - Infertility

            - Gestational diabetes or pregnancy-induced high blood pressure

            - Miscarriage or premature birth

            - Type 2 diabetes or prediabetes

            - Depression, anxiety, and eating disorders

            - Sleep apnea

            - Endometrial cancer

            - Cardiovascular disease



            ## Treatment

            Treatment focuses on managing your individual concerns, such as infertility, hirsutism, acne or obesity.

            Specific treatment might involve lifestyle changes or medication.

            """)

        with gr.TabItem("Debug Info"):
            gr.Markdown("### Model and System Information")
            debug_output = gr.Textbox(label="Debug Information", value=f"Model type: {type(model).__name__}")

            debug_btn = gr.Button("Check Model Status")

            def check_model():
                try:
                    if model is None:
                        return "Model not loaded"

                    model_info = f"Model type: {type(model).__name__}\n"

                    # Try to get additional info based on model type
                    if hasattr(model, 'n_estimators'):
                        model_info += f"Number of estimators: {model.n_estimators}\n"

                    if hasattr(model, 'feature_importances_'):
                        top_features = np.argsort(model.feature_importances_)[-5:]
                        model_info += "Top 5 important features (indices): " + str(top_features.tolist()) + "\n"

                    # Check if the model has predict and predict_proba methods
                    has_predict = hasattr(model, 'predict') and callable(getattr(model, 'predict'))
                    has_proba = hasattr(model, 'predict_proba') and callable(getattr(model, 'predict_proba'))

                    model_info += f"Has predict method: {has_predict}\n"
                    model_info += f"Has predict_proba method: {has_proba}\n"

                    return model_info
                except Exception as e:
                    return f"Error checking model: {str(e)}"

            debug_btn.click(check_model, outputs=debug_output)

# Launch the app
if __name__ == "__main__":
    app.launch(share=True, debug=True)