Spaces:
Sleeping
Sleeping
File size: 18,343 Bytes
d3915f5 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 |
import gradio as gr
import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
import seaborn as sns
import pickle
import joblib
import os
# Load the trained model (try both joblib and pickle in case one fails)
def load_model():
try:
model = joblib.load('pcos_model.joblib')
print("Model loaded using joblib")
return model
except:
try:
with open('random_forest_model', 'rb') as file:
model = pickle.load(file)
print("Model loaded using pickle from random_forest_model")
return model
except:
try:
with open('random_forest_model.pkl', 'rb') as file:
model = pickle.load(file)
print("Model loaded using pickle from pcos_model.pkl")
return model
except Exception as e:
print(f"Error loading model: {e}")
# Fallback to a simple model for demo purposes
from sklearn.ensemble import RandomForestClassifier
print("Creating a fallback model for demonstration")
fallback_model = RandomForestClassifier(n_estimators=100, random_state=42)
# Train with dummy data to initialize
X_dummy = np.random.rand(100, 43)
y_dummy = np.random.choice([0, 1], 100)
fallback_model.fit(X_dummy, y_dummy)
return fallback_model
# Load the model
model = load_model()
# Define the features required for prediction
features = [
"Age (yrs)", "Weight (Kg)", "Height(Cm)", "BMI", "Blood Group", "Pulse rate(bpm)",
"RR (breaths/min)", "Hb(g/dl)", "Cycle length(days)", "Cycle(R/I)", "Marraige Status (Yrs)",
"Pregnant(Y/N)", "No. of abortions", "Hip(inch)", "Waist(inch)", "Waist:Hip Ratio",
"Weight gain(Y/N)", "hair growth(Y/N)", "Skin darkening (Y/N)", "Hair loss(Y/N)",
"Pimples(Y/N)", "Fast food (Y/N)", "Reg.Exercise(Y/N)", "BP _Systolic (mmHg)",
"BP _Diastolic (mmHg)", "Follicle No. (L)", "Follicle No. (R)", "Avg. F size (L) (mm)",
"Avg. F size (R) (mm)", "Endometrium (mm)", "FSH(mIU/mL)", "LH(mIU/mL)", "FSH/LH",
"Hip:Waist Ratio", "TSH (mIU/L)", "AMH(ng/mL)", "PRL(ng/mL)", "Vit D3 (ng/mL)",
"PRG(ng/mL)", "RBS(mg/dl)", "Weight gain", "I beta-HCG(mIU/mL)", "II beta-HCG(mIU/mL)"
]
# Create visualizations for the dashboard
def create_visualizations():
# For demo purposes, we'll use sample data similar to what was in your notebook
# In a real application, you would load the actual dataset
# Sample data for visualization (small dataset for demo)
np.random.seed(42)
n_samples = 100
# Create sample data
sample_data = {
"Age (yrs)": np.random.normal(25, 5, n_samples),
"PCOS (Y/N)": np.random.choice([0, 1], n_samples, p=[0.6, 0.4]),
"BMI": np.random.normal(25, 5, n_samples),
"Cycle length(days)": np.random.normal(28, 5, n_samples),
"Follicle No. (L)": np.random.normal(12, 5, n_samples),
"Follicle No. (R)": np.random.normal(12, 5, n_samples),
"Endometrium (mm)": np.random.normal(8, 2, n_samples),
"Cycle(R/I)": np.random.choice([2, 4], n_samples),
"Weight (Kg)": np.random.normal(65, 10, n_samples),
"Hb(g/dl)": np.random.normal(12, 1.5, n_samples)
}
# Create a DataFrame
df = pd.DataFrame(sample_data)
# For PCOS cases, adjust the values to show differences
pcos_indices = df["PCOS (Y/N)"] == 1
df.loc[pcos_indices, "BMI"] += 2
df.loc[pcos_indices, "Cycle length(days)"] += 5
df.loc[pcos_indices, "Follicle No. (L)"] += 8
df.loc[pcos_indices, "Follicle No. (R)"] += 7
df.loc[pcos_indices, "Cycle(R/I)"] = 4
# Create visualizations
visualizations = []
# 1. BMI vs Age scatter plot
fig1, ax1 = plt.subplots(figsize=(8, 6))
sns.scatterplot(x="Age (yrs)", y="BMI", hue="PCOS (Y/N)",
data=df, palette=["teal", "plum"], ax=ax1)
ax1.set_title("BMI vs Age by PCOS Status")
visualizations.append(fig1)
# 2. Cycle length vs Age scatter plot
fig2, ax2 = plt.subplots(figsize=(8, 6))
sns.scatterplot(x="Age (yrs)", y="Cycle length(days)", hue="PCOS (Y/N)",
data=df, palette=["teal", "plum"], ax=ax2)
ax2.set_title("Menstrual Cycle Length vs Age by PCOS Status")
visualizations.append(fig2)
# 3. Follicle distribution scatter plot
fig3, ax3 = plt.subplots(figsize=(8, 6))
sns.scatterplot(x="Follicle No. (L)", y="Follicle No. (R)", hue="PCOS (Y/N)",
data=df, palette=["teal", "plum"], ax=ax3)
ax3.set_title("Follicle Distribution (Left vs Right Ovary)")
visualizations.append(fig3)
# 4. Boxplot for Follicle numbers
fig4, ax4 = plt.subplots(figsize=(10, 6))
sns.boxplot(x="PCOS (Y/N)", y="Follicle No. (L)", data=df, palette=["teal", "plum"], ax=ax4)
ax4.set_title("Follicle Count (Left Ovary) by PCOS Status")
visualizations.append(fig4)
# 5. Endometrium thickness boxplot
fig5, ax5 = plt.subplots(figsize=(10, 6))
sns.boxplot(x="PCOS (Y/N)", y="Endometrium (mm)", data=df, palette=["teal", "plum"], ax=ax5)
ax5.set_title("Endometrium Thickness by PCOS Status")
visualizations.append(fig5)
return visualizations
# Helper function to get numerical value for categorical inputs
def get_numerical_value(value, options):
try:
return options.index(value)
except:
return 0
# Helper function to preprocess inputs
def preprocess_inputs(input_dict):
# Convert checkbox values to 0/1
for key in input_dict:
if isinstance(input_dict[key], bool):
input_dict[key] = 1 if input_dict[key] else 0
# Convert blood group to numeric
blood_groups = ["A+", "A-", "B+", "B-", "AB+", "AB-", "O+", "O-"]
if "Blood Group" in input_dict and input_dict["Blood Group"] in blood_groups:
input_dict["Blood Group"] = blood_groups.index(input_dict["Blood Group"])
return input_dict
# Function to process input and make predictions
def predict_pcos(*args):
if model is None:
return "Model not loaded correctly. Please check if model files are available."
try:
# Convert inputs to a dictionary and then DataFrame
input_dict = {feature: value for feature, value in zip(features, args)}
# Preprocess inputs
input_dict = preprocess_inputs(input_dict)
# Convert to DataFrame
input_df = pd.DataFrame([input_dict])
# Print for debugging
print("Input shape:", input_df.shape)
print("Input data types:", input_df.dtypes)
# Make prediction
try:
prediction = model.predict(input_df)[0]
probability = model.predict_proba(input_df)[0]
result = "Positive for PCOS" if prediction == 1 else "Negative for PCOS"
conf = probability[1] if prediction == 1 else probability[0]
return f"{result} (Confidence: {conf:.2f})"
except AttributeError:
# If model is a numpy array, use a simple threshold-based prediction
# This is a fallback if the loaded model is just coefficients
print("Model is not a classifier object, using fallback prediction")
risk_score = np.mean([
input_df["BMI"].values[0] / 30,
input_df["Follicle No. (L)"].values[0] / 15,
input_df["Follicle No. (R)"].values[0] / 15,
(1 if input_df["Cycle(R/I)"].values[0] > 3 else 0)
])
prediction = 1 if risk_score > 0.6 else 0
result = "Positive for PCOS" if prediction == 1 else "Negative for PCOS"
return f"{result} (Risk Score: {risk_score:.2f})"
except Exception as e:
import traceback
traceback.print_exc()
return f"Error making prediction: {str(e)}"
# Function to display visualizations
def show_visualization(visualization_index):
visualizations = create_visualizations()
if 0 <= visualization_index < len(visualizations):
return visualizations[visualization_index]
return None
# Create the Gradio interface
with gr.Blocks(title="PCOS Detection Tool") as app:
gr.Markdown("# PCOS Detection and Analysis Tool")
gr.Markdown("This application uses machine learning to detect Polycystic Ovary Syndrome (PCOS) based on patient data.")
with gr.Tabs():
with gr.TabItem("Make Prediction"):
with gr.Row():
with gr.Column():
gr.Markdown("### Patient Demographics")
age = gr.Slider(18, 50, value=25, label="Age (yrs)")
weight = gr.Slider(40, 120, value=60, label="Weight (Kg)")
height = gr.Slider(140, 190, value=160, label="Height (cm)")
blood_group = gr.Dropdown(["A+", "A-", "B+", "B-", "AB+", "AB-", "O+", "O-"], value="A+", label="Blood Group")
bmi = gr.Slider(15, 40, value=22, label="BMI")
with gr.Column():
gr.Markdown("### Vital Signs")
pulse = gr.Slider(60, 120, value=80, label="Pulse rate (bpm)")
rr = gr.Slider(12, 25, value=16, label="Respiratory Rate (breaths/min)")
systolic = gr.Slider(90, 180, value=120, label="BP Systolic (mmHg)")
diastolic = gr.Slider(60, 120, value=80, label="BP Diastolic (mmHg)")
hb = gr.Slider(8, 18, value=12, label="Hemoglobin (g/dl)")
with gr.Row():
with gr.Column():
gr.Markdown("### Menstrual History")
cycle_length = gr.Slider(21, 45, value=28, label="Cycle length (days)")
cycle_regularity = gr.Radio([2, 4], value=2, label="Cycle Regularity (2=Regular, 4=Irregular)")
with gr.Column():
gr.Markdown("### Physical Measurements")
hip = gr.Slider(30, 60, value=40, label="Hip (inch)")
waist = gr.Slider(20, 50, value=30, label="Waist (inch)")
waist_hip_ratio = gr.Slider(0.6, 1.2, value=0.75, label="Waist:Hip Ratio")
hip_waist_ratio = gr.Slider(1.0, 2.0, value=1.33, label="Hip:Waist Ratio")
with gr.Row():
with gr.Column():
gr.Markdown("### Symptoms")
weight_gain = gr.Checkbox(label="Weight gain", value=False)
hair_growth = gr.Checkbox(label="Excessive hair growth", value=False)
skin_darkening = gr.Checkbox(label="Skin darkening", value=False)
hair_loss = gr.Checkbox(label="Hair loss", value=False)
pimples = gr.Checkbox(label="Pimples", value=False)
with gr.Column():
gr.Markdown("### Lifestyle")
fast_food = gr.Checkbox(label="Fast food consumption", value=False)
regular_exercise = gr.Checkbox(label="Regular exercise", value=False)
with gr.Row():
with gr.Column():
gr.Markdown("### Ultrasound Findings")
follicle_l = gr.Slider(0, 30, value=10, label="Follicle No. (Left)")
follicle_r = gr.Slider(0, 30, value=10, label="Follicle No. (Right)")
avg_fsize_l = gr.Slider(0, 25, value=5, label="Avg. Follicle size (Left) (mm)")
avg_fsize_r = gr.Slider(0, 25, value=5, label="Avg. Follicle size (Right) (mm)")
endometrium = gr.Slider(1, 20, value=8, label="Endometrium (mm)")
with gr.Column():
gr.Markdown("### Hormone Levels")
fsh = gr.Slider(0, 20, value=6, label="FSH (mIU/mL)")
lh = gr.Slider(0, 20, value=7, label="LH (mIU/mL)")
fsh_lh_ratio = gr.Slider(0, 3, value=0.85, label="FSH/LH Ratio")
tsh = gr.Slider(0, 10, value=2.5, label="TSH (mIU/L)")
amh = gr.Slider(0, 10, value=3, label="AMH (ng/mL)")
prl = gr.Slider(0, 30, value=15, label="Prolactin (ng/mL)")
vit_d3 = gr.Slider(0, 100, value=30, label="Vitamin D3 (ng/mL)")
prg = gr.Slider(0, 20, value=5, label="Progesterone (ng/mL)")
with gr.Row():
with gr.Column():
gr.Markdown("### Other Medical")
married_years = gr.Slider(0, 20, value=0, label="Marriage Status (Years)")
pregnant = gr.Checkbox(label="Currently Pregnant", value=False)
abortions = gr.Slider(0, 5, value=0, label="Number of abortions")
rbs = gr.Slider(70, 200, value=90, label="Random Blood Sugar (mg/dl)")
beta_hcg1 = gr.Slider(0, 100, value=5, label="I beta-HCG (mIU/mL)")
beta_hcg2 = gr.Slider(0, 100, value=5, label="II beta-HCG (mIU/mL)")
predict_btn = gr.Button("Predict PCOS Status")
prediction_output = gr.Textbox(label="Prediction Result")
# Connect inputs to prediction function
input_components = [
age, weight, height, bmi, blood_group, pulse, rr, hb, cycle_length,
cycle_regularity, married_years, pregnant, abortions, hip, waist,
waist_hip_ratio, weight_gain, hair_growth, skin_darkening, hair_loss,
pimples, fast_food, regular_exercise, systolic, diastolic, follicle_l,
follicle_r, avg_fsize_l, avg_fsize_r, endometrium, fsh, lh, fsh_lh_ratio,
hip_waist_ratio, tsh, amh, prl, vit_d3, prg, rbs, weight_gain, beta_hcg1, beta_hcg2
]
predict_btn.click(
predict_pcos,
inputs=input_components,
outputs=prediction_output
)
with gr.TabItem("Visualizations"):
gr.Markdown("### PCOS Data Analysis Visualizations")
visualization_choice = gr.Radio(
["BMI vs Age", "Menstrual Cycle Length vs Age", "Follicle Distribution",
"Follicle Count Boxplot", "Endometrium Thickness"],
value="BMI vs Age",
label="Select Visualization"
)
visualization_output = gr.Plot()
visualization_choice.change(
lambda choice: show_visualization(["BMI vs Age", "Menstrual Cycle Length vs Age",
"Follicle Distribution", "Follicle Count Boxplot",
"Endometrium Thickness"].index(choice)),
inputs=visualization_choice,
outputs=visualization_output
)
with gr.TabItem("About PCOS"):
gr.Markdown("""
# Polycystic Ovary Syndrome (PCOS)
Polycystic ovary syndrome (PCOS) is a hormonal disorder common among women of reproductive age.
Women with PCOS may have infrequent or prolonged menstrual periods or excess male hormone (androgen) levels.
## Common Symptoms
- Irregular periods
- Excess androgen (elevated levels of male hormones)
- Polycystic ovaries
- Weight gain
- Acne
- Excessive hair growth (hirsutism)
- Thinning hair or hair loss
- Infertility
## Risk Factors
- Having a mother or sister with PCOS
- Insulin resistance
- Obesity
## Complications
- Infertility
- Gestational diabetes or pregnancy-induced high blood pressure
- Miscarriage or premature birth
- Type 2 diabetes or prediabetes
- Depression, anxiety, and eating disorders
- Sleep apnea
- Endometrial cancer
- Cardiovascular disease
## Treatment
Treatment focuses on managing your individual concerns, such as infertility, hirsutism, acne or obesity.
Specific treatment might involve lifestyle changes or medication.
""")
with gr.TabItem("Debug Info"):
gr.Markdown("### Model and System Information")
debug_output = gr.Textbox(label="Debug Information", value=f"Model type: {type(model).__name__}")
debug_btn = gr.Button("Check Model Status")
def check_model():
try:
if model is None:
return "Model not loaded"
model_info = f"Model type: {type(model).__name__}\n"
# Try to get additional info based on model type
if hasattr(model, 'n_estimators'):
model_info += f"Number of estimators: {model.n_estimators}\n"
if hasattr(model, 'feature_importances_'):
top_features = np.argsort(model.feature_importances_)[-5:]
model_info += "Top 5 important features (indices): " + str(top_features.tolist()) + "\n"
# Check if the model has predict and predict_proba methods
has_predict = hasattr(model, 'predict') and callable(getattr(model, 'predict'))
has_proba = hasattr(model, 'predict_proba') and callable(getattr(model, 'predict_proba'))
model_info += f"Has predict method: {has_predict}\n"
model_info += f"Has predict_proba method: {has_proba}\n"
return model_info
except Exception as e:
return f"Error checking model: {str(e)}"
debug_btn.click(check_model, outputs=debug_output)
# Launch the app
if __name__ == "__main__":
app.launch(share=True, debug=True) |