File size: 35,661 Bytes
f3d17b9
734c48c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
f3d17b9
734c48c
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
import streamlit as st
import pandas as pd
import numpy as np
import yfinance as yf
import plotly.graph_objects as go
from plotly.subplots import make_subplots
import warnings
warnings.filterwarnings('ignore')
from curl_cffi import requests
session = requests.Session(impersonate="chrome")

# Import all technical indicators from your file
from technical_indicators import *

# Page configuration
st.set_page_config(
    page_title="Technical Analysis Dashboard",
    page_icon="πŸ“ˆ",
    layout="wide",
    initial_sidebar_state="expanded"
)

# Custom CSS for better styling
st.markdown("""
<style>
    .main-header {
        font-size: 2.5rem;
        font-weight: bold;
        color: #1f77b4;
        text-align: center;
        margin-bottom: 2rem;
    }
    .sub-header {
        font-size: 1.5rem;
        font-weight: bold;
        text-align: center;
        margin-bottom: 1rem;
    }
    .metric-container {
        background-color: #f0f2f6;
        padding: 1rem;
        border-radius: 0.5rem;
        margin: 0.5rem 0;
    }
    .indicator-section {
        background-color: #ffffff;
        padding: 1.5rem;
        border-radius: 0.5rem;
        margin: 1rem 0;
        border: 1px solid #e0e0e0;
    }
</style>
""", unsafe_allow_html=True)

# Title
st.markdown('<h1 class="main-header">πŸ“ˆ Technical Analysis Dashboard</h1>', unsafe_allow_html=True)
st.markdown('<h3 class="sub-header">Developed By Zane Vijay Falcao</h3>', unsafe_allow_html=True)
st.divider()
# Sidebar for inputs
with st.sidebar:
    st.header("πŸ“Š Configuration")
    
    # Stock symbol input
    symbol = st.text_input("Stock Symbol", value="AAPL", help="Enter stock symbol (e.g., AAPL, GOOGL, MSFT)")
    
    # Time period selection
    period = st.selectbox(
        "Time Period",
        ["1mo", "3mo", "6mo", "1y", "2y", "5y", "max"],
        index=3
    )
    
    # Interval selection
    interval = st.selectbox(
        "Data Interval",
        ["1d", "5d", "1wk", "1mo"],
        index=0
    )
    
    st.divider()
    
    # Indicator Categories
    st.header("πŸ“ˆ Select Indicators")
    
    # Trend Indicators
    with st.expander("Trend Indicators", expanded=True):
        show_sma = st.checkbox("Simple Moving Average (SMA)", value=True)
        show_ema = st.checkbox("Exponential Moving Average (EMA)", value=True)
        show_hma = st.checkbox("Hull Moving Average (HMA)")
        show_wma = st.checkbox("Weighted Moving Average (WMA)")
        show_kama = st.checkbox("Kaufman Adaptive Moving Average (KAMA)")
        show_frama = st.checkbox("Fractal Adaptive Moving Average (FRAMA)")
        show_evwma = st.checkbox("Ehlers Volatility Weighted MA (EVWMA)")
        show_vwap = st.checkbox("Volume Weighted Average Price (VWAP)")
    
    # Momentum Indicators
    with st.expander("Momentum Indicators", expanded=True):
        show_rsi = st.checkbox("Relative Strength Index (RSI)", value=True)
        show_macd = st.checkbox("MACD", value=True)
        show_stochrsi = st.checkbox("Stochastic RSI")
        show_cmo = st.checkbox("Chande Momentum Oscillator (CMO)")
        show_roc = st.checkbox("Rate of Change (ROC)")
        show_tsi = st.checkbox("True Strength Index (TSI)")
        show_kst = st.checkbox("Know Sure Thing (KST)")
        show_ppo = st.checkbox("Price Percentage Oscillator (PPO)")
        show_uo = st.checkbox("Ultimate Oscillator (UO)")
    
    # Volume Indicators
    with st.expander("Volume Indicators"):
        show_obv = st.checkbox("On-Balance Volume (OBV)")
        show_adl = st.checkbox("Accumulation/Distribution Line (ADL)")
        show_chaikin = st.checkbox("Chaikin Oscillator")
        show_efi = st.checkbox("Elder's Force Index (EFI)")
        show_emv = st.checkbox("Ease of Movement (EMV)")
        show_mfi = st.checkbox("Money Flow Index (MFI)")
        show_vpt = st.checkbox("Volume Price Trend (VPT)")
        show_fve = st.checkbox("Fractal Volume Efficiency (FVE)")
        show_vzo = st.checkbox("Volume Zone Oscillator (VZO)")
    
    # Volatility Indicators
    with st.expander("Volatility Indicators"):
        show_bollinger = st.checkbox("Bollinger Bands", value=True)
        show_kc = st.checkbox("Keltner Channels")
        show_dc = st.checkbox("Donchian Channels")
        show_atr = st.checkbox("Average True Range (ATR)")
        show_chandelier = st.checkbox("Chandelier Exit")
        show_psar = st.checkbox("Parabolic SAR")
        show_apz = st.checkbox("Adaptive Price Zone (APZ)")
    
    # Oscillators
    with st.expander("Oscillators"):
        show_adx = st.checkbox("Average Directional Index (ADX)")
        show_cci = st.checkbox("Commodity Channel Index (CCI)")
        show_fish = st.checkbox("Fisher Transform")
        show_ao = st.checkbox("Awesome Oscillator (AO)")
        show_mi = st.checkbox("Mass Index (MI)")
        show_wto = st.checkbox("Wave Trend Oscillator (WTO)")
        show_copp = st.checkbox("Coppock Curve")
        show_ift_rsi = st.checkbox("Inverse Fisher Transform RSI")
    
    # Complex Indicators
    with st.expander("Complex Indicators"):
        show_ichimoku = st.checkbox("Ichimoku Cloud")
        show_pivot = st.checkbox("Pivot Points")
        show_pivot_fib = st.checkbox("Fibonacci Pivot Points")
        show_basp = st.checkbox("Buyer and Seller Pressure (BASP)")
        show_baspn = st.checkbox("Normalized BASP")
        show_dmi = st.checkbox("Directional Movement Index (DMI)")
        show_ebbp = st.checkbox("Elder Bull/Bear Power")
    
    st.divider()
    
    # Parameter settings
    st.header("βš™οΈ Parameters")
    sma_period = st.slider("SMA Period", 5, 50, 20)
    ema_period = st.slider("EMA Period", 5, 50, 20)
    rsi_period = st.slider("RSI Period", 5, 30, 14)
    bb_period = st.slider("Bollinger Bands Period", 10, 30, 20)
    bb_std = st.slider("Bollinger Bands Std Dev", 1.0, 3.0, 2.0, 0.1)


col1, col2, col3, col4, col5 = st.columns(5)
st.divider()
@st.cache_data
def fetch_data(symbol, period, interval):
    ticker = yf.Ticker(symbol.upper(), session=session)
    return ticker.history(period=period, interval=interval)

# Main content area
if col3.button("πŸš€ Analyze Stock", type="secondary", use_container_width=True):
    
    try:
        # Fetch data
        with st.spinner(f"Fetching data for {symbol.upper()}..."):
            
            data = fetch_data(symbol, period, interval)
            
            if data.empty:
                st.error("No data found for the given symbol. Please check the symbol and try again.")
                st.stop()
        
        # Display basic info
        col1, col2, col3, col4 = st.columns(4)
        
        with col1:
            st.metric("Current Price", f"${data['Close'].iloc[-1]:.2f}")
        
        with col2:
            price_change = data['Close'].iloc[-1] - data['Close'].iloc[-2]
            st.metric("Price Change", f"${price_change:.2f}", f"{price_change:.2f}")
        
        with col3:
            pct_change = (price_change / data['Close'].iloc[-2]) * 100
            st.metric("% Change", f"{pct_change:.2f}%", f"{pct_change:.2f}%")
        
        with col4:
            st.metric("Volume", f"{data['Volume'].iloc[-1]:,.0f}")
        
        # Calculate indicators
        indicators = {}
        
        # Trend Indicators
        if show_sma:
            indicators['SMA'] = SMA(data, sma_period)
        if show_ema:
            indicators['EMA'] = EMA(data, ema_period)
        if show_hma:
            indicators['HMA'] = HMA(data, 20)
        if show_wma:
            indicators['WMA'] = WMA(data, 20)
        if show_kama:
            indicators['KAMA'] = KAMA(data)
        if show_frama:
            indicators['FRAMA'] = FRAMA(data)
        if show_evwma:
            indicators['EVWMA'] = EVWMA(data)
        if show_vwap:
            indicators['VWAP'] = VWAP(data)
        
        # Momentum Indicators
        if show_rsi:
            indicators['RSI'] = RSI(data, rsi_period)
        if show_macd:
            indicators['MACD'] = MACD(data)
        if show_stochrsi:
            indicators['StochRSI'] = STOCHRSI(data)
        if show_cmo:
            indicators['CMO'] = CMO(data)
        if show_roc:
            indicators['ROC'] = ROC(data)
        if show_tsi:
            indicators['TSI'] = TSI(data)
        if show_kst:
            indicators['KST'] = KST(data)
        if show_ppo:
            indicators['PPO'] = PPO(data)
        if show_uo:
            indicators['UO'] = UO(data)
        
        # Volume Indicators
        if show_obv:
            indicators['OBV'] = OBV(data)
        if show_adl:
            indicators['ADL'] = ADL(data)
        if show_chaikin:
            indicators['Chaikin'] = CHAIKIN(data)
        if show_efi:
            indicators['EFI'] = EFI(data)
        if show_emv:
            indicators['EMV'] = EMV(data)
        if show_mfi:
            indicators['MFI'] = MFI(data)
        if show_vpt:
            indicators['VPT'] = VPT(data)
        if show_fve:
            indicators['FVE'] = FVE(data)
        if show_vzo:
            indicators['VZO'] = VZO(data)
        
        # Volatility Indicators
        if show_bollinger:
            indicators['Bollinger'] = BOLLINGER(data, bb_period, bb_std)
        if show_kc:
            indicators['KC'] = KC(data)
        if show_dc:
            indicators['DC'] = DC(data)
        if show_atr:
            indicators['ATR'] = ATR(data)
        if show_chandelier:
            indicators['Chandelier'] = CHANDELIER(data)
        if show_psar:
            indicators['PSAR'] = PSAR(data)
        if show_apz:
            indicators['APZ'] = APZ(data)
        
        # Oscillators
        if show_adx:
            indicators['ADX'] = ADX(data)
        if show_cci:
            indicators['CCI'] = CCI(data)
        if show_fish:
            indicators['Fisher'] = FISH(data)
        if show_ao:
            indicators['AO'] = AO(data)
        if show_mi:
            indicators['MI'] = MI(data)
        if show_wto:
            indicators['WTO'] = WTO(data)
        if show_copp:
            indicators['Coppock'] = COPP(data)
        if show_ift_rsi:
            indicators['IFT_RSI'] = IFT_RSI(data)
        
        # Complex Indicators
        if show_ichimoku:
            indicators['Ichimoku'] = ICHIMOKU(data)
        if show_pivot:
            indicators['Pivot'] = PIVOT(data)
        if show_pivot_fib:
            indicators['Pivot_Fib'] = PIVOT_FIB(data)
        if show_basp:
            indicators['BASP'] = BASP(data)
        if show_baspn:
            indicators['BASPN'] = BASPN(data)
        if show_dmi:
            indicators['DMI'] = DMI(data)
        if show_ebbp:
            indicators['EBBP'] = EBBP(data)
        
        # Create main price chart
        fig = make_subplots(
            rows=4, cols=1,
            shared_xaxes=True,
            vertical_spacing=0.05,
            subplot_titles=('Price Chart', 'Volume', 'Oscillators', 'Additional Indicators'),
            row_heights=[0.5, 0.2, 0.15, 0.15]
        )

        # Add candlestick chart
        fig.add_trace(
            go.Candlestick(
                x=data.index,
                open=data['Open'],
                high=data['High'],
                low=data['Low'],
                close=data['Close'],
                name='Price'
            ),
            row=1, col=1
        )

        # Define colors for trend indicators to avoid repetition
        colors = ["red", "yellow", "green", "purple", "orange", "brown", "pink", "gray", "cyan", "magenta"]
        color_idx = 0

        # Add trend indicators to price chart (row 1)
        trend_indicators = ['SMA', 'EMA', 'HMA', 'WMA', 'KAMA', 'FRAMA', 'EVWMA', 'VWAP']
        for name in trend_indicators:
            if name in indicators:
                fig.add_trace(
                    go.Scatter(
                        x=data.index,
                        y=indicators[name].fillna(method='ffill'),  # Handle NaNs
                        mode='lines',
                        name=name,
                        line=dict(color=colors[color_idx % len(colors)])
                    ),
                    row=1, col=1
                )
                color_idx += 1

        # Add volatility indicators to price chart (row 1)
        if 'Bollinger' in indicators:
            bb = indicators['Bollinger']
            fig.add_trace(
                go.Scatter(
                    x=data.index,
                    y=bb['BB_UPPER'].fillna(method='ffill'),
                    mode='lines',
                    name='BB Upper',
                    line=dict(color='lightblue', dash='dash')
                ),
                row=1, col=1
            )
            fig.add_trace(
                go.Scatter(
                    x=data.index,
                    y=bb['BB_LOWER'].fillna(method='ffill'),
                    mode='lines',
                    name='BB Lower',
                    line=dict(color='lightblue', dash='dash'),
                    fill='tonexty',
                    fillcolor='rgba(173, 216, 230, 0.2)'
                ),
                row=1, col=1
            )

        if 'KC' in indicators:
            kc = indicators['KC']
            fig.add_trace(
                go.Scatter(x=data.index, y=kc['KC_UPPER'].fillna(method='ffill'), name='KC Upper', line=dict(color='orange')),
                row=1, col=1
            )
            fig.add_trace(
                go.Scatter(x=data.index, y=kc['KC_LOWER'].fillna(method='ffill'), name='KC Lower', line=dict(color='orange')),
                row=1, col=1
            )
            fig.add_trace(
                go.Scatter(x=data.index, y=kc['KC_MIDDLE'].fillna(method='ffill'), name='KC Middle', line=dict(color='gray', dash='dot')),
                row=1, col=1
            )

        if 'DC' in indicators:
            dc = indicators['DC']
            fig.add_trace(
                go.Scatter(x=data.index, y=dc['DC_U'].fillna(method='ffill'), name='DC Upper', line=dict(color='green')),
                row=1, col=1
            )
            fig.add_trace(
                go.Scatter(x=data.index, y=dc['DC_L'].fillna(method='ffill'), name='DC Lower', line=dict(color='green')),
                row=1, col=1
            )
            fig.add_trace(
                go.Scatter(x=data.index, y=dc['DC_M'].fillna(method='ffill'), name='DC Middle', line=dict(color='limegreen', dash='dot')),
                row=1, col=1
            )

        if 'Chandelier' in indicators:
            ce = indicators['Chandelier']
            fig.add_trace(
                go.Scatter(x=data.index, y=ce['CHANDELIER_Long'].fillna(method='ffill'), name='Chandelier Long', line=dict(color='darkred')),
                row=1, col=1
            )
            fig.add_trace(
                go.Scatter(x=data.index, y=ce['CHANDELIER_Short'].fillna(method='ffill'), name='Chandelier Short', line=dict(color='darkgreen')),
                row=1, col=1
            )

        if 'APZ' in indicators:
            apz = indicators['APZ']
            fig.add_trace(
                go.Scatter(x=data.index, y=apz['APZ_UPPER'].fillna(method='ffill'), name='APZ Upper', line=dict(color='orange', dash='dot')),
                row=1, col=1
            )
            fig.add_trace(
                go.Scatter(x=data.index, y=apz['APZ_LOWER'].fillna(method='ffill'), name='APZ Lower', line=dict(color='coral', dash='dot')),
                row=1, col=1
            )

        if 'Ichimoku' in indicators:
            ichimoku = indicators['Ichimoku']
            fig.add_trace(
                go.Scatter(x=data.index, y=ichimoku['TENKAN'].fillna(method='ffill'), name='Tenkan-sen', line=dict(color='blue')),
                row=1, col=1
            )
            fig.add_trace(
                go.Scatter(x=data.index, y=ichimoku['KIJUN'].fillna(method='ffill'), name='Kijun-sen', line=dict(color='red')),
                row=1, col=1
            )
            fig.add_trace(
                go.Scatter(x=data.index, y=ichimoku['SENKOU_A'].fillna(method='ffill'), name='Senkou A', line=dict(color='green')),
                row=1, col=1
            )
            fig.add_trace(
                go.Scatter(x=data.index, y=ichimoku['SENKOU_B'].fillna(method='ffill'), name='Senkou B', line=dict(color='red'), fill='tonexty', fillcolor='rgba(0, 255, 0, 0.2)'),
                row=1, col=1
            )
            fig.add_trace(
                go.Scatter(x=data.index, y=ichimoku['CHIKOU'].fillna(method='ffill'), name='Chikou Span', line=dict(color='purple')),
                row=1, col=1
            )

        if 'Pivot' in indicators:
            pivot = indicators['Pivot']
            for col in ['pivot', 'r1', 'r2', 'r3', 's1', 's2', 's3']:
                fig.add_trace(
                    go.Scatter(x=data.index, y=pivot[col].fillna(method='ffill'), name=f'Pivot {col.upper()}', line=dict(dash='dash')),
                    row=1, col=1
                )

        if 'Pivot_Fib' in indicators:
            pivot_fib = indicators['Pivot_Fib']
            for col in ['pivot', 'r1', 'r2', 'r3', 's1', 's2', 's3']:
                fig.add_trace(
                    go.Scatter(x=data.index, y=pivot_fib[col].fillna(method='ffill'), name=f'Fib Pivot {col.upper()}', line=dict(dash='dot')),
                    row=1, col=1
                )

        if 'PSAR' in indicators:
            psar = indicators['PSAR']
            fig.add_trace(
                go.Scatter(x=data.index, y=psar['psar'].fillna(method='ffill'), name='PSAR', mode='markers', marker=dict(size=5, color='blue')),
                row=1, col=1
            )
            fig.add_trace(
                go.Scatter(x=data.index, y=psar['psarbull'].fillna(method='ffill'), name='PSAR Bull', mode='markers', marker=dict(size=5, color='green')),
                row=1, col=1
            )
            fig.add_trace(
                go.Scatter(x=data.index, y=psar['psarbear'].fillna(method='ffill'), name='PSAR Bear', mode='markers', marker=dict(size=5, color='red')),
                row=1, col=1
            )

        # Add volume (row 2)
        fig.add_trace(
            go.Bar(
                x=data.index,
                y=data['Volume'],
                name='Volume',
                marker_color='lightblue'
            ),
            row=2, col=1
        )

        # Add oscillators to row 3
        if 'RSI' in indicators:
            fig.add_trace(
                go.Scatter(x=data.index, y=indicators['RSI'].fillna(method='ffill'), mode='lines', name='RSI', line=dict(color='purple')),
                row=3, col=1
            )
            fig.add_hline(y=70, line_dash="dash", line_color="red", row=3, col=1)
            fig.add_hline(y=30, line_dash="dash", line_color="green", row=3, col=1)

        if 'StochRSI' in indicators:
            fig.add_trace(
                go.Scatter(x=data.index, y=indicators['StochRSI'].fillna(method='ffill'), mode='lines', name='StochRSI', line=dict(color='orange')),
                row=3, col=1
            )
            fig.add_hline(y=80, line_dash="dash", line_color="red", row=3, col=1)
            fig.add_hline(y=20, line_dash="dash", line_color="green", row=3, col=1)

        if 'CCI' in indicators:
            fig.add_trace(
                go.Scatter(x=data.index, y=indicators['CCI'].fillna(method='ffill'), mode='lines', name='CCI', line=dict(color='blue')),
                row=3, col=1
            )
            fig.add_hline(y=100, line_dash="dash", line_color="red", row=3, col=1)
            fig.add_hline(y=-100, line_dash="dash", line_color="green", row=3, col=1)

        if 'ADX' in indicators:
            fig.add_trace(
                go.Scatter(x=data.index, y=indicators['ADX'].fillna(method='ffill'), mode='lines', name='ADX', line=dict(color='cyan')),
                row=3, col=1
            )
            fig.add_hline(y=25, line_dash="dash", line_color="gray", row=3, col=1)

        if 'Fisher' in indicators:
            fig.add_trace(
                go.Scatter(x=data.index, y=indicators['Fisher'].fillna(method='ffill'), mode='lines', name='Fisher Transform', line=dict(color='magenta')),
                row=3, col=1
            )

        if 'AO' in indicators:
            fig.add_trace(
                go.Scatter(x=data.index, y=indicators['AO'].fillna(method='ffill'), mode='lines', name='Awesome Oscillator', line=dict(color='green')),
                row=3, col=1
            )
            fig.add_hline(y=0, line_dash="dash", line_color="gray", row=3, col=1)

        if 'MI' in indicators:
            fig.add_trace(
                go.Scatter(x=data.index, y=indicators['MI'].fillna(method='ffill'), mode='lines', name='Mass Index', line=dict(color='purple')),
                row=3, col=1
            )
            fig.add_hline(y=27, line_dash="dash", line_color="red", row=3, col=1)

        if 'IFT_RSI' in indicators:
            fig.add_trace(
                go.Scatter(x=data.index, y=indicators['IFT_RSI'].fillna(method='ffill'), mode='lines', name='IFT RSI', line=dict(color='orange')),
                row=3, col=1
            )

        # Add momentum and volume indicators to row 4
        if 'MACD' in indicators:
            macd = indicators['MACD']
            macd_line = macd['MACD']
            signal_line = macd['SIGNAL']
            macd_histogram = macd_line - signal_line
            fig.add_trace(
                go.Scatter(x=data.index, y=macd_line.fillna(method='ffill'), mode='lines', name='MACD', line=dict(color='#04c6fc')),
                row=4, col=1
            )
            fig.add_trace(
                go.Scatter(x=data.index, y=signal_line.fillna(method='ffill'), mode='lines', name='MACD Signal', line=dict(color='blue', dash='dash')),
                row=4, col=1
            )
            fig.add_trace(
                go.Bar(x=data.index, y=macd_histogram.fillna(0), name='MACD Histogram', marker_color=['green' if val >= 0 else 'red' for val in macd_histogram]),
                row=4, col=1
            )

        if 'TSI' in indicators:
            tsi = indicators['TSI']
            fig.add_trace(
                go.Scatter(x=data.index, y=tsi['TSI'].fillna(method='ffill'), name='TSI', line=dict(color='blue')),
                row=4, col=1
            )
            fig.add_trace(
                go.Scatter(x=data.index, y=tsi['signal'].fillna(method='ffill'), name='TSI Signal', line=dict(color='blue', dash='dash')),
                row=4, col=1
            )

        if 'KST' in indicators:
            kst = indicators['KST']
            fig.add_trace(
                go.Scatter(x=data.index, y=kst['KST'].fillna(method='ffill'), name='KST', line=dict(color='purple')),
                row=4, col=1
            )
            fig.add_trace(
                go.Scatter(x=data.index, y=kst['signal'].fillna(method='ffill'), name='KST Signal', line=dict(color='purple', dash='dot')),
                row=4, col=1
            )

        if 'PPO' in indicators:
            ppo = indicators['PPO']
            fig.add_trace(
                go.Scatter(x=data.index, y=ppo['PPO'].fillna(method='ffill'), name='PPO', line=dict(color='cyan')),
                row=4, col=1
            )
            fig.add_trace(
                go.Scatter(x=data.index, y=ppo['PPO_signal'].fillna(method='ffill'), name='PPO Signal', line=dict(color='cyan', dash='dash')),
                row=4, col=1
            )
            fig.add_trace(
                go.Bar(x=data.index, y=ppo['PPO_histo'].fillna(0), name='PPO Histogram', marker_color=['green' if val >= 0 else 'red' for val in ppo['PPO_histo']]),
                row=4, col=1
            )

        if 'CMO' in indicators:
            fig.add_trace(
                go.Scatter(x=data.index, y=indicators['CMO'].fillna(method='ffill'), name='CMO', line=dict(color='orange')),
                row=4, col=1
            )
            fig.add_hline(y=50, line_dash="dash", line_color="red", row=4, col=1)
            fig.add_hline(y=-50, line_dash="dash", line_color="green", row=4, col=1)

        if 'ROC' in indicators:
            fig.add_trace(
                go.Scatter(x=data.index, y=indicators['ROC'].fillna(method='ffill'), name='ROC', line=dict(color='green')),
                row=4, col=1
            )
            fig.add_hline(y=0, line_dash="dash", line_color="gray", row=4, col=1)

        if 'UO' in indicators:
            fig.add_trace(
                go.Scatter(x=data.index, y=indicators['UO'].fillna(method='ffill'), name='Ultimate Oscillator', line=dict(color='purple')),
                row=4, col=1
            )
            fig.add_hline(y=70, line_dash="dash", line_color="red", row=4, col=1)
            fig.add_hline(y=30, line_dash="dash", line_color="green", row=4, col=1)

        if 'OBV' in indicators:
            fig.add_trace(
                go.Scatter(x=data.index, y=indicators['OBV'].fillna(method='ffill'), name='OBV', line=dict(color='blue')),
                row=4, col=1
            )

        if 'ADL' in indicators:
            fig.add_trace(
                go.Scatter(x=data.index, y=indicators['ADL'].fillna(method='ffill'), name='ADL', line=dict(color='cyan')),
                row=4, col=1
            )

        if 'EFI' in indicators:
            fig.add_trace(
                go.Scatter(x=data.index, y=indicators['EFI'].fillna(method='ffill'), name='EFI', line=dict(color='magenta')),
                row=4, col=1
            )

        if 'EMV' in indicators:
            fig.add_trace(
                go.Scatter(x=data.index, y=indicators['EMV'].fillna(method='ffill'), name='EMV', line=dict(color='orange')),
                row=4, col=1
            )

        if 'MFI' in indicators:
            fig.add_trace(
                go.Scatter(x=data.index, y=indicators['MFI'].fillna(method='ffill'), name='MFI', line=dict(color='blue')),
                row=4, col=1
            )
            fig.add_hline(y=80, line_dash="dash", line_color="red", row=4, col=1)
            fig.add_hline(y=20, line_dash="dash", line_color="green", row=4, col=1)

        if 'VPT' in indicators:
            fig.add_trace(
                go.Scatter(x=data.index, y=indicators['VPT'].fillna(method='ffill'), name='VPT', line=dict(color='blue', dash='dot')),
                row=4, col=1
            )

        if 'FVE' in indicators:
            fig.add_trace(
                go.Scatter(x=data.index, y=indicators['FVE'].fillna(method='ffill'), name='FVE', line=dict(color='blue', dash='dot')),
                row=4, col=1
            )

        if 'VZO' in indicators:
            fig.add_trace(
                go.Scatter(x=data.index, y=indicators['VZO'].fillna(method='ffill'), name='VZO', line=dict(color='blue', dash='dot')),
                row=4, col=1
            )
            fig.add_hline(y=40, line_dash="dash", line_color="green", row=4, col=1)
            fig.add_hline(y=5, line_dash="dash", line_color="red", row=4, col=1)
            fig.add_hline(y=-5, line_dash="dash", line_color="red", row=4, col=1)
            fig.add_hline(y=-40, line_dash="dash", line_color="green", row=4, col=1)

        if 'WTO' in indicators:
            wto = indicators['WTO']
            fig.add_trace(
                go.Scatter(x=data.index, y=wto['WT1'].fillna(method='ffill'), name='WTO WT1', line=dict(color='cyan')),
                row=4, col=1
            )
            fig.add_trace(
                go.Scatter(x=data.index, y=wto['WT2'].fillna(method='ffill'), name='WTO WT2', line=dict(color='cyan', dash='dash')),
                row=4, col=1
            )

        if 'Coppock' in indicators:
            fig.add_trace(
                go.Scatter(x=data.index, y=indicators['Coppock'].fillna(method='ffill'), name='Coppock Curve', line=dict(color='purple')),
                row=4, col=1
            )
            fig.add_hline(y=0, line_dash="dash", line_color="gray", row=4, col=1)

        if 'BASP' in indicators:
            basp = indicators['BASP']
            fig.add_trace(
                go.Scatter(x=data.index, y=basp['Buy'].fillna(method='ffill'), name='BASP Buy', line=dict(color='green')),
                row=4, col=1
            )
            fig.add_trace(
                go.Scatter(x=data.index, y=basp['Sell'].fillna(method='ffill'), name='BASP Sell', line=dict(color='red')),
                row=4, col=1
            )

        if 'BASPN' in indicators:
            baspn = indicators['BASPN']
            fig.add_trace(
                go.Scatter(x=data.index, y=baspn['BASPN_Buy'].fillna(method='ffill'), name='BASPN Buy', line=dict(color='limegreen')),
                row=4, col=1
            )
            fig.add_trace(
                go.Scatter(x=data.index, y=baspn['BASPN_Sell'].fillna(method='ffill'), name='BASPN Sell', line=dict(color='coral')),
                row=4, col=1
            )

        if 'DMI' in indicators:
            dmi = indicators['DMI']
            fig.add_trace(
                go.Scatter(x=data.index, y=dmi['+DI'].fillna(method='ffill'), name='+DI', line=dict(color='blue')),
                row=4, col=1
            )
            fig.add_trace(
                go.Scatter(x=data.index, y=dmi['-DI'].fillna(method='ffill'), name='-DI', line=dict(color='red')),
                row=4, col=1
            )

        if 'EBBP' in indicators:
            ebbp = indicators['EBBP']
            fig.add_trace(
                go.Scatter(x=data.index, y=ebbp['Bull'].fillna(method='ffill'), name='Bull Power', line=dict(color='green')),
                row=4, col=1
            )
            fig.add_trace(
                go.Scatter(x=data.index, y=ebbp['Bear'].fillna(method='ffill'), name='Bear Power', line=dict(color='red')),
                row=4, col=1
            )

        if 'ATR' in indicators:
            fig.add_trace(
                go.Scatter(x=data.index, y=indicators['ATR'].fillna(method='ffill'), name='ATR', line=dict(color='blue')),
                row=4, col=1
            )
            
        # Update layout
        fig.update_layout(
            title=f'{symbol.upper()} - Technical Analysis',
            xaxis_rangeslider_visible=False,
            height=800,
            showlegend=True
        )
        
        st.plotly_chart(fig, use_container_width=True)
        
        # Display indicator values in tabs
        st.subheader("πŸ“Š Indicator Values")
        
        # Create tabs for different categories
        tab1, tab2, tab3, tab4, tab5 = st.tabs(["Trend", "Momentum", "Volume", "Volatility", "Oscillators"])
        
        with tab1:
            st.markdown("### Trend Indicators")
            trend_cols = st.columns(3)
            col_idx = 0
            
            for name, indicator in indicators.items():
                if name in ['SMA', 'EMA', 'HMA', 'WMA', 'KAMA', 'FRAMA', 'EVWMA', 'VWAP']:
                    with trend_cols[col_idx % 3]:
                        if isinstance(indicator, pd.Series):
                            st.metric(name, f"{indicator.iloc[-1]:.2f}")
                        col_idx += 1
        
        with tab2:
            st.markdown("### Momentum Indicators")
            momentum_cols = st.columns(3)
            col_idx = 0
            
            for name, indicator in indicators.items():
                if name in ['RSI', 'StochRSI', 'CMO', 'ROC', 'UO']:
                    with momentum_cols[col_idx % 3]:
                        if isinstance(indicator, pd.Series):
                            st.metric(name, f"{indicator.iloc[-1]:.2f}")
                        col_idx += 1
        
        with tab3:
            st.markdown("### Volume Indicators")
            volume_cols = st.columns(3)
            col_idx = 0
            
            for name, indicator in indicators.items():
                if name in ['OBV', 'ADL', 'EFI', 'EMV', 'MFI', 'VPT', 'FVE', 'VZO']:
                    with volume_cols[col_idx % 3]:
                        if isinstance(indicator, pd.Series):
                            st.metric(name, f"{indicator.iloc[-1]:.2f}")
                        col_idx += 1
        
        with tab4:
            st.markdown("### Volatility Indicators")
            volatility_cols = st.columns(3)
            col_idx = 0
            
            for name, indicator in indicators.items():
                if name in ['ATR', 'PSAR']:
                    with volatility_cols[col_idx % 3]:
                        if isinstance(indicator, pd.Series):
                            st.metric(name, f"{indicator.iloc[-1]:.2f}")
                        col_idx += 1
        
        with tab5:
            st.markdown("### Oscillators")
            osc_cols = st.columns(3)
            col_idx = 0
            
            for name, indicator in indicators.items():
                if name in ['ADX', 'CCI', 'Fisher', 'AO', 'MI']:
                    with osc_cols[col_idx % 3]:
                        if isinstance(indicator, pd.Series):
                            st.metric(name, f"{indicator.iloc[-1]:.2f}")
                        col_idx += 1
        
        # Raw data section
        with st.expander("πŸ“‹ Raw Data"):
            st.dataframe(data.tail(50))
        
        # Download section
        st.subheader("πŸ’Ύ Download Data")
        
        # Combine all indicators into one DataFrame
        combined_df = data.copy()
        for name, indicator in indicators.items():
            if isinstance(indicator, pd.Series):
                combined_df[name] = indicator
            elif isinstance(indicator, pd.DataFrame):
                for col in indicator.columns:
                    combined_df[f"{name}_{col}"] = indicator[col]
        
        csv = combined_df.to_csv()
        st.download_button(
            label="Download CSV",
            data=csv,
            file_name=f'{symbol}_technical_analysis.csv',
            mime='text/csv'
        )
        
    except Exception as e:
        st.error(f"An error occurred: {str(e)}")
        st.error("Please check your internet connection and try again.")

# Instructions
else:
    st.markdown("""
    ## πŸš€ How to Use This Dashboard
    
    1. **Enter a stock symbol** in the sidebar (e.g., AAPL, GOOGL, MSFT) for Indian Stocks, use NSE symbols like RELIANCE.NS
    or BHEL.NS.
    2. **Select time period and interval** for the data
    3. **Choose technical indicators** you want to analyze
    4. **Adjust parameters** for the indicators
    5. **Click "Analyze Stock"** to generate the analysis
    
    ### πŸ“ˆ Available Indicators
    
    This dashboard includes **40+ technical indicators** across multiple categories:
    
    - **Trend Indicators**: SMA, EMA, HMA, WMA, KAMA, FRAMA, EVWMA, VWAP
    - **Momentum Indicators**: RSI, MACD, Stochastic RSI, CMO, ROC, TSI, KST, PPO, UO
    - **Volume Indicators**: OBV, ADL, Chaikin Oscillator, EFI, EMV, MFI, VPT, FVE, VZO
    - **Volatility Indicators**: Bollinger Bands, Keltner Channels, Donchian Channels, ATR, Chandelier Exit, Parabolic SAR
    - **Oscillators**: ADX, CCI, Fisher Transform, Awesome Oscillator, Mass Index, Wave Trend Oscillator
    - **Complex Indicators**: Ichimoku Cloud, Pivot Points, Fibonacci Pivots, BASP, DMI, Elder Bull/Bear Power
    
    ### πŸ’‘ Tips
    
    - Use multiple indicators together for better analysis
    - Adjust parameters based on your trading timeframe
    - Download the data for further analysis
    - Check different time periods to understand trends
    """)

# Footer
st.markdown("---")
st.markdown("**Technical Analysis Dashboard** | Built with Streamlit & Python | Data from Yahoo Finance")
st.markdown("---")
st.markdown("**Made By Zane Vijay Falcao**")