File size: 42,156 Bytes
67f57f1 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 |
# technical_indicators.py
import pandas as pd
import numpy as np
from math import sqrt
def SMA(ohlc, period=14, column="Close"):
"""Simple Moving Average"""
return pd.Series(ohlc[column].rolling(window=period).mean(), name=f"SMA_{period}")
def SMM(ohlc, period= 9, column= "Close"):
"""
Simple moving median, an alternative to moving average. SMA, when used to estimate the underlying trend in a time series,
is susceptible to rare events such as rapid shocks or other anomalies. A more robust estimate of the trend is the simple moving median over n time periods.
"""
return pd.Series(
ohlc[column].rolling(window=period).median(),
name="{0} period SMM".format(period),
)
def SSMA(ohlc,period = 9, column = "Close",adjust = True):
"""
Smoothed simple moving average.
:param ohlc: data
:param period: range
:param column: open/close/high/low column of the DataFrame
:return: result Series
"""
return pd.Series(
ohlc[column]
.ewm(ignore_na=False, alpha=1.0 / period, min_periods=0, adjust=adjust)
.mean(),
name="{0} period SSMA".format(period),
)
def EMA(ohlc, period=14, column="Close", adjust=True):
"""Exponential Moving Average"""
return pd.Series(ohlc[column].ewm(span=period, adjust=adjust).mean(), name=f"EMA_{period}")
def RSI(ohlc, period=14, column="Close", adjust=True):
"""Relative Strength Index"""
delta = ohlc[column].diff()
up, down = delta.copy(), delta.copy()
up[up < 0] = 0
down[down > 0] = 0
_gain = up.ewm(com=period - 1, adjust=adjust).mean()
_loss = abs(down.ewm(com=period - 1, adjust=adjust).mean())
RS = _gain / _loss
return pd.Series(100 - (100 / (1 + RS)), name=f"RSI_{period}")
def DEMA(ohlc,period = 9,column = "Close",adjust = True):
"""
Double Exponential Moving Average - attempts to remove the inherent lag associated to Moving Averages
by placing more weight on recent values. The name suggests this is achieved by applying a double exponential
smoothing which is not the case. The name double comes from the fact that the value of an EMA (Exponential Moving Average) is doubled.
To keep it in line with the actual data and to remove the lag the value 'EMA of EMA' is subtracted from the previously doubled EMA.
Because EMA(EMA) is used in the calculation, DEMA needs 2 * period -1 samples to start producing values in contrast to the period
samples needed by a regular EMA
"""
DEMA = (
2 * EMA(ohlc, period)
- EMA(ohlc, period).ewm(span=period, adjust=adjust).mean()
)
return pd.Series(DEMA, name="{0} period DEMA".format(period))
def TEMA(ohlc, period = 9, adjust = True):
"""
Triple exponential moving average - attempts to remove the inherent lag associated to Moving Averages by placing more weight on recent values.
The name suggests this is achieved by applying a triple exponential smoothing which is not the case. The name triple comes from the fact that the
value of an EMA (Exponential Moving Average) is triple.
To keep it in line with the actual data and to remove the lag the value 'EMA of EMA' is subtracted 3 times from the previously tripled EMA.
Finally 'EMA of EMA of EMA' is added.
Because EMA(EMA(EMA)) is used in the calculation, TEMA needs 3 * period - 2 samples to start producing values in contrast to the period samples
needed by a regular EMA.
"""
triple_ema = 3 * EMA(ohlc, period)
ema_ema_ema = (
EMA(ohlc, period)
.ewm(ignore_na=False, span=period, adjust=adjust)
.mean()
.ewm(ignore_na=False, span=period, adjust=adjust)
.mean()
)
TEMA = (
triple_ema
- 3 * EMA(ohlc, period).ewm(span=period, adjust=adjust).mean()
+ ema_ema_ema
)
return pd.Series(TEMA, name="{0} period TEMA".format(period))
def TRIMA(ohlc, period = 18,column="Close"):
"""
The Triangular Moving Average (TRIMA) [also known as TMA] represents an average of prices,
but places weight on the middle prices of the time period.
The calculations double-smooth the data using a window width that is one-half the length of the series.
source: https://www.thebalance.com/triangular-moving-average-tma-description-and-uses-1031203
"""
weights = np.concatenate([np.arange(1, period // 2 + 1), np.arange(period // 2, 0, -1)])
weights = weights / weights.sum()
def triangular(x):
return np.dot(x, weights)
return pd.Series(ohlc[column].rolling(period).apply(triangular, raw=True), name=f"TRIMA_{period}")
def TRIX(ohlc,period = 20,column = "Close",adjust = True):
"""
The TRIX indicator calculates the rate of change of a triple exponential moving average.
The values oscillate around zero. Buy/sell signals are generated when the TRIX crosses above/below zero.
A (typically) 9 period exponential moving average of the TRIX can be used as a signal line.
A buy/sell signals are generated when the TRIX crosses above/below the signal line and is also above/below zero.
The TRIX was developed by Jack K. Hutson, publisher of Technical Analysis of Stocks & Commodities magazine,
and was introduced in Volume 1, Number 5 of that magazine.
"""
data = ohlc[column]
def _ema(data, period, adjust):
return pd.Series(data.ewm(span=period, adjust=adjust).mean())
m = _ema(_ema(_ema(data, period, adjust), period, adjust), period, adjust)
return pd.Series(100 * (m.diff() / m), name="{0} period TRIX".format(period))
def VAMA(ohlcv,period = 8, column = "Close",colvol="Volume"):
"""
Volume Adjusted Moving Average
"""
vp = ohlcv[colvol] * ohlcv[column]
volsum = ohlcv[colvol].rolling(window=period).mean()
volRatio = pd.Series(vp / volsum, name="VAMA")
cumSum = (volRatio * ohlcv[column]).rolling(window=period).sum()
cumDiv = volRatio.rolling(window=period).sum()
return pd.Series(cumSum / cumDiv, name="{0} period VAMA".format(period))
def ER(ohlc, period=10, column="Close"):
"""Efficiency Ratio"""
change = ohlc[column].diff(period).abs()
total_change = ohlc[column].diff().abs().rolling(window=period).sum()
return pd.Series(change / total_change, name="ER")
def KAMA(ohlc, er=10, ema_fast=2, ema_slow=30, period=20, column="Close", adjust=True):
"""Kaufman Adaptive Moving Average"""
efficiency_ratio = ER(ohlc, er, column=column)
fast_alpha = 2 / (ema_fast + 1)
slow_alpha = 2 / (ema_slow + 1)
smoothing_constant = (efficiency_ratio * (fast_alpha - slow_alpha) + slow_alpha) ** 2
sma = ohlc[column].rolling(window=period).mean()
kama = [float("nan")] * len(ohlc)
# Build KAMA line
for i in range(period, len(ohlc)):
if np.isnan(kama[i - 1]):
kama[i] = sma.iloc[i]
else:
kama[i] = kama[i - 1] + smoothing_constant.iloc[i] * (ohlc[column].iloc[i] - kama[i - 1])
return pd.Series(kama, index=ohlc.index, name=f"{period} period KAMA")
def ZLEMA(ohlc,period = 26,adjust = True,column = "Close"):
"""ZLEMA is an abbreviation of Zero Lag Exponential Moving Average. It was developed by John Ehlers and Rick Way.
ZLEMA is a kind of Exponential moving average but its main idea is to eliminate the lag arising from the very nature of the moving averages
and other trend following indicators. As it follows price closer, it also provides better price averaging and responds better to price swings."""
lag = int((period - 1) / 2)
ema = pd.Series(
(ohlc[column] + (ohlc[column].diff(lag))),
name="{0} period ZLEMA.".format(period),
)
zlema = pd.Series(
ema.ewm(span=period, adjust=adjust).mean(),
name="{0} period ZLEMA".format(period),
)
return zlema
def WMA(ohlc, period=14, column="Close"):
"""Weighted Moving Average"""
weights = np.arange(1, period + 1)
def linear(w):
def _inner(x):
return np.dot(x, w) / w.sum()
return _inner
close = ohlc[column]
return pd.Series(close.rolling(period, min_periods=period).apply(linear(weights), raw=True), name=f"WMA_{period}")
def HMA(ohlc, period=20, column="Close"):
"""Hull Moving Average"""
half_length = int(period / 2)
sqrt_length = int(sqrt(period))
wma_half = WMA(ohlc, half_length, column)
wma_full = WMA(ohlc, period, column)
hma = WMA(pd.DataFrame({column: 2 * wma_half - wma_full}), sqrt_length, column)
return hma.rename(f"HMA_{period}")
def EVWMA(ohlcv, period=20, high="High", low="Low", close="Close", colvol="Volume", adjust=True):
"""Ehlers Volatility Weighted Moving Average"""
tr = pd.concat([
ohlcv[high] - ohlcv[low],
abs(ohlcv[high] - ohlcv[close].shift()),
abs(ohlcv[low] - ohlcv[close].shift())
], axis=1).max(axis=1)
vol_weight = ohlcv[colvol] / tr.rolling(window=period).mean()
return pd.Series((vol_weight * ohlcv[close]).ewm(span=period, adjust=adjust).mean(), name="EVWMA")
def TP(ohlc,high="High",low="Low",column="Close"):
"""Typical Price refers to the arithmetic average of the high, low, and closing prices for a given period."""
return pd.Series((ohlc[high] + ohlc[low] + ohlc[column]) / 3, name="TP")
def VWAP(ohlcv,colvol="Volume"):
"""
The volume weighted average price (VWAP) is a trading benchmark used especially in pension plans.
VWAP is calculated by adding up the dollars traded for every transaction (price multiplied by number of shares traded) and then dividing
by the total shares traded for the day.
"""
return pd.Series(
((ohlcv[colvol] * TP(ohlcv,open="Open",close="Close",high="High",low="Low")).cumsum()) / ohlcv[colvol].cumsum(),
name="VWAP.",
)
def FRAMA(ohlc, period=20, batch=10, column="Close", adjust=True):
"""Fractal Adaptive Moving Average"""
assert period % 2 == 0, "FRAMA period must be even"
c = ohlc[column].copy()
window = batch * 2
hh = c.rolling(batch).max()
ll = c.rolling(batch).min()
n1 = (hh - ll) / batch
n2 = n1.shift(batch)
hh2 = c.rolling(window).max()
ll2 = c.rolling(window).min()
n3 = (hh2 - ll2) / window
D = (np.log(n1 + n2) - np.log(n3)) / np.log(2)
alp = np.exp(-4.6 * (D - 1))
alp = np.clip(alp, 0.01, 1).values
filt = np.zeros(len(c))
for i in range(len(c)):
if i < window:
filt[i] = c.iloc[i]
else:
filt[i] = c.iloc[i] * alp[i] + (1 - alp[i]) * filt[i - 1]
return pd.Series(filt, index=ohlc.index, name=f"FRAMA_{period}")
def MACD(ohlc, period_fast = 12, period_slow = 26,signal = 9,column = "Close",adjust = True):
"""
MACD, MACD Signal and MACD difference.
The MACD Line oscillates above and below the zero line, which is also known as the centerline.
These crossovers signal that the 12-day EMA has crossed the 26-day EMA. The direction, of course, depends on the direction of the moving average cross.
Positive MACD indicates that the 12-day EMA is above the 26-day EMA. Positive values increase as the shorter EMA diverges further from the longer EMA.
This means upside momentum is increasing. Negative MACD values indicates that the 12-day EMA is below the 26-day EMA.
Negative values increase as the shorter EMA diverges further below the longer EMA. This means downside momentum is increasing.
Signal line crossovers are the most common MACD signals. The signal line is a 9-day EMA of the MACD Line.
As a moving average of the indicator, it...curs when the MACD turns up and crosses above the signal line.
A bearish crossover occurs when the MACD turns down and crosses below the signal line.
"""
EMA_fast = pd.Series(
ohlc[column].ewm(ignore_na=False, span=period_fast, adjust=adjust).mean(),
name="EMA_fast",
)
EMA_slow = pd.Series(
ohlc[column].ewm(ignore_na=False, span=period_slow, adjust=adjust).mean(),
name="EMA_slow",
)
MACD = pd.Series(EMA_fast - EMA_slow, name="MACD")
MACD_signal = pd.Series(
MACD.ewm(ignore_na=False, span=signal, adjust=adjust).mean(), name="SIGNAL"
)
return pd.concat([MACD, MACD_signal], axis=1)
def BOLLINGER(ohlc, period=20, dev=2, column="Close"):
"""Bollinger Bands"""
sma = ohlc[column].rolling(window=period).mean()
std = ohlc[column].rolling(window=period).std()
upper_band = sma + std * dev
lower_band = sma - std * dev
return pd.DataFrame({"BB_UPPER": upper_band, "BB_LOWER": lower_band})
def STOCH(ohlc, period = 14,close="Close",high="High",low="Low"):
"""Stochastic oscillator %K
The stochastic oscillator is a momentum indicator comparing the closing price of a security
to the range of its prices over a certain period of time.
The sensitivity of the oscillator to market movements is reducible by adjusting that time
period or by taking a moving average of the result.
"""
highest_high = ohlc[high].rolling(center=False, window=period).max()
lowest_low = ohlc[low].rolling(center=False, window=period).min()
STOCH = pd.Series(
(ohlc[close] - lowest_low) / (highest_high - lowest_low) * 100,
name="{0} period STOCH %K".format(period),
)
return STOCH
def STOCHD(ohlc, period = 3, stoch_period = 14,close="Close",high="High",low="Low"):
"""Stochastic oscillator %D
STOCH%D is a 3 period simple moving average of %K.
"""
return pd.Series(
STOCH(ohlc, period = stoch_period,close=close,high=high,low=low).rolling(center=False, window=period).mean(),
name="{0} period STOCH %D.".format(period),
)
def STOCHRSI(ohlc, rsi_period=14, stoch_period=14, column="Close", adjust=True):
"""Stochastic RSI"""
rsi = RSI(ohlc, rsi_period, column, adjust)
min_val = rsi.rolling(window=stoch_period).min()
max_val = rsi.rolling(window=stoch_period).max()
stochrsi = 100 * (rsi - min_val) / (max_val - min_val)
return pd.Series(stochrsi, name=f"STOCHRSI_{rsi_period}_{stoch_period}")
def CMO(ohlc, period=9, factor=100, column="Close", adjust=True):
"""Chande Momentum Oscillator"""
delta = ohlc[column].diff()
up = delta.copy()
down = delta.copy()
up[up < 0] = 0
down[down > 0] = 0
_gain = up.ewm(com=period, adjust=adjust).mean()
_loss = abs(down.ewm(com=period, adjust=adjust).mean())
return pd.Series(factor * ((_gain - _loss) / (_gain + _loss)), name="CMO")
def EMV(ohlcv, period=14, high="High", low="Low", colvol="Volume"):
"""Ease of Movement"""
dm = ((ohlcv[high] + ohlcv[low]) / 2) - ((ohlcv[high].shift() + ohlcv[low].shift()) / 2)
br = (ohlcv[colvol] / 100000000) / ((ohlcv[high] - ohlcv[low]))
emv = dm / br
return pd.Series(emv.rolling(window=period).mean(), name="EMV")
def CHAIKIN(ohlcv, colvol="Volume", column="Close", high="High", low="Low", adjust=True):
"""Chaikin Oscillator"""
adl = ADL(ohlcv, colvol, column, high, low)
return pd.Series(adl.ewm(span=3, adjust=adjust).mean() - adl.ewm(span=10, adjust=adjust).mean(), name="CHAIKIN")
def ADL(ohlcv, colvol="Volume", column="Close", high="High", low="Low"):
"""Accumulation/Distribution Line"""
clv = ((ohlcv[column] - ohlcv[low]) - (ohlcv[high] - ohlcv[column])) / (ohlcv[high] - ohlcv[low])
clv = clv.fillna(0)
return pd.Series((clv * ohlcv[colvol]).cumsum(), name="ADL")
def OBV(ohlcv, column="Close", colvol="Volume"):
"""On-Balance Volume"""
obv = [0]
for i in range(1, len(ohlcv)):
if ohlcv[column].iloc[i] > ohlcv[column].iloc[i - 1]:
obv.append(obv[-1] + ohlcv[colvol].iloc[i])
elif ohlcv[column].iloc[i] < ohlcv[column].iloc[i - 1]:
obv.append(obv[-1] - ohlcv[colvol].iloc[i])
else:
obv.append(obv[-1])
return pd.Series(obv, index=ohlcv.index, name="OBV")
def ADX(ohlc, period=14, high="High", low="Low", close="Close", adjust=True):
"""Average Directional Index"""
tr1 = ohlc[high] - ohlc[low]
tr2 = abs(ohlc[high] - ohlc[close].shift())
tr3 = abs(ohlc[low] - ohlc[close].shift())
tr = pd.concat([tr1, tr2, tr3], axis=1).max(axis=1)
atr = tr.ewm(span=period, min_periods=period).mean()
up_diff = ohlc[high].diff()
down_diff = ohlc[low].diff()
plus_dm = pd.Series(np.where((up_diff > down_diff) & (up_diff > 0), up_diff, 0), name="plus_dm")
minus_dm = pd.Series(np.where((down_diff > up_diff) & (down_diff > 0), down_diff, 0), name="minus_dm")
plus_di = 100 * (plus_dm.ewm(span=period, min_periods=period).mean() / atr)
minus_di = 100 * (minus_dm.ewm(span=period, min_periods=period).mean() / atr)
dx = 100 * abs(plus_di - minus_di) / (plus_di + minus_di)
adx = dx.ewm(span=period, min_periods=period).mean()
return pd.Series(adx, name=f"ADX_{period}")
def EFI(ohlc, period=13, column="Close", colvol="Volume", adjust=True):
"""Elder's Force Index"""
fi1 = pd.Series(ohlc[colvol] * ohlc[column].diff())
return pd.Series(fi1.ewm(ignore_na=False, min_periods=9, span=10, adjust=adjust).mean(), name="EFI")
def WOBV(ohlcv, column="Close", colvol="Volume"):
"""Weighted On-Balance Volume"""
obv = [0]
for i in range(1, len(ohlcv)):
delta = ohlcv[column].iloc[i] - ohlcv[column].iloc[i - 1]
obv.append(obv[-1] + delta * ohlcv[colvol].iloc[i])
return pd.Series(obv, index=ohlcv.index, name="WOBV")
def DMI(ohlc, period=14, high="High", low="Low", column="Close"):
"""Directional Movement Index"""
up_diff = ohlc[high].diff()
down_diff = ohlc[low].diff()
plus_dm = pd.Series(np.where((up_diff > down_diff) & (up_diff > 0), up_diff, 0), name="plus_dm")
minus_dm = pd.Series(np.where((down_diff > up_diff) & (down_diff > 0), down_diff, 0), name="minus_dm")
tr = pd.concat([ohlc[high] - ohlc[low], abs(ohlc[high] - ohlc[column].shift()), abs(ohlc[low] - ohlc[column].shift())], axis=1).max(axis=1)
atr = tr.ewm(span=period, min_periods=period).mean()
plus_di = 100 * (plus_dm.ewm(span=period, min_periods=period).mean() / atr)
minus_di = 100 * (minus_dm.ewm(span=period, min_periods=period).mean() / atr)
return pd.DataFrame({"+DI": plus_di, "-DI": minus_di})
def CFI(ohlcv, column="Close", colvol="Volume", adjust=True):
"""Cumulative Force Index"""
fi1 = pd.Series(ohlcv[colvol] * ohlcv[column].diff())
cfi = pd.Series(fi1.ewm(ignore_na=False, min_periods=9, span=10, adjust=adjust).mean(), name="CFI")
return cfi.cumsum()
def EBBP(ohlc, period=13, high="High", low="Low", column="Close", adjust=True):
"""Elder Bull Power / Bear Power"""
ema = ohlc[column].ewm(span=period, adjust=adjust).mean()
bull_power = ohlc[high] - ema
bear_power = ohlc[low] - ema
return pd.DataFrame({"Bull": bull_power, "Bear": bear_power}, index=ohlc.index)
def ROC(ohlc, period=10, column="Close"):
"""Rate of Change"""
return pd.Series(ohlc[column].pct_change(period) * 100, name=f"ROC_{period}")
def CCI(ohlc, period=20, high="High", low="Low", close="Close"):
"""Commodity Channel Index"""
tp = (ohlc[high] + ohlc[low] + ohlc[close]) / 3
sma = tp.rolling(window=period).mean()
mean_deviation = tp.rolling(window=period).apply(lambda x: np.fabs(x - x.mean()).mean())
cci = (tp - sma) / (0.015 * mean_deviation)
return pd.Series(cci, name=f"CCI_{period}")
def COPP(ohlc, adjust = True):
"""The Coppock Curve is a momentum indicator, it signals buying opportunities when the indicator moved from negative territory to positive territory."""
roc1 = ROC(ohlc, 14)
roc2 = ROC(ohlc, 11)
return pd.Series(
(roc1 + roc2).ewm(span=10, min_periods=9, adjust=adjust).mean(),
name="Coppock Curve",
)
def VBM(ohlc, period=14, std_dev=2, column="Close"):
"""Volatility-Based Momentum"""
volatility = ohlc[column].pct_change().rolling(window=period).std() * np.sqrt(period)
momentum = ohlc[column].pct_change(period)
return pd.Series(momentum / volatility, name="VBM")
def QSTICK(ohlc, period=10, open="Open", close="Close"):
"""Q Stick Indicator"""
return pd.Series(ohlc[close].pct_change(period) - ohlc[open].pct_change(period), name="QSTICK")
def WTO(ohlc, channel_length=10, average_length=21, adjust=True):
"""Wave Trend Oscillator"""
ap = (ohlc["High"] + ohlc["Low"] + ohlc["Close"]) / 3
esa = ap.ewm(span=average_length, adjust=adjust).mean()
d = pd.Series((ap - esa).abs().ewm(span=channel_length, adjust=adjust).mean(), name="d")
ci = (ap - esa) / (0.015 * d)
wt1 = pd.Series(ci.ewm(span=average_length, adjust=adjust).mean(), name="WT1.")
wt2 = pd.Series(wt1.rolling(window=4).mean(), name="WT2.")
return pd.concat([wt1, wt2], axis=1)
def SAR(ohlc, af = 0.02, amax = 0.2,high="High",low="Low"):
"""SAR stands for "stop and reverse," which is the actual indicator used in the system.
SAR trails price as the trend extends over time. The indicator is below prices when prices are rising and above prices when prices are falling.
In this regard, the indicator stops and reverses when the price trend reverses and breaks above or below the indicator."""
high1, low1 = ohlc[high], ohlc[low]
# Starting values
sig0, xpt0, af0 = True, high1[0], af
_sar = [low1[0] - (high1 - low1).std()]
for i in range(1, len(ohlc)):
sig1, xpt1, af1 = sig0, xpt0, af0
lmin = min(low1[i - 1], low1[i])
lmax = max(high1[i - 1], high1[i])
if sig1:
sig0 = low1[i] > _sar[-1]
xpt0 = max(lmax, xpt1)
else:
sig0 = high1[i] >= _sar[-1]
xpt0 = min(lmin, xpt1)
if sig0 == sig1:
sari = _sar[-1] + (xpt1 - _sar[-1]) * af1
af0 = min(amax, af1 + af)
if sig0:
af0 = af0 if xpt0 > xpt1 else af1
sari = min(sari, lmin)
else:
af0 = af0 if xpt0 < xpt1 else af1
sari = max(sari, lmax)
else:
af0 = af
sari = xpt0
_sar.append(sari)
return pd.Series(_sar, index=ohlc.index)
def PSAR(ohlc, iaf = 0.02, maxaf = 0.2,high="High",low="Low",close="Close"):
"""
The parabolic SAR indicator, developed by J. Wells Wilder, is used by traders to determine trend direction and potential reversals in price.
The indicator uses a trailing stop and reverse method called "SAR," or stop and reverse, to identify suitable exit and entry points.
Traders also refer to the indicator as the parabolic stop and reverse, parabolic SAR, or PSAR.
https://www.investopedia.com/terms/p/parabolicindicator.asp
https://virtualizedfrog.wordpress.com/2014/12/09/parabolic-sar-implementation-in-python/
"""
length = len(ohlc)
high1, low1, close1 = ohlc[high], ohlc[low], ohlc[close]
psar = close1[0 : len(close1)]
psarbull = [None] * length
psarbear = [None] * length
bull = True
af = iaf
hp = high1[0]
lp = low1[0]
for i in range(2, length):
if bull:
psar[i] = psar[i - 1] + af * (hp - psar[i - 1])
else:
psar[i] = psar[i - 1] + af * (lp - psar[i - 1])
reverse = False
if bull:
if low1[i] < psar[i]:
bull = False
reverse = True
psar[i] = hp
lp = low1[i]
af = iaf
else:
if high1[i] > psar[i]:
bull = True
reverse = True
psar[i] = lp
hp = high1[i]
af = iaf
if not reverse:
if bull:
if high1[i] > hp:
hp = high1[i]
af = min(af + iaf, maxaf)
if low1[i - 1] < psar[i]:
psar[i] = low1[i - 1]
if low1[i - 2] < psar[i]:
psar[i] = low1[i - 2]
else:
if low1[i] < lp:
lp = low1[i]
af = min(af + iaf, maxaf)
if high1[i - 1] > psar[i]:
psar[i] = high1[i - 1]
if high1[i - 2] > psar[i]:
psar[i] = high1[i - 2]
if bull:
psarbull[i] = psar[i]
else:
psarbear[i] = psar[i]
psar = pd.Series(psar, name="psar", index=ohlc.index)
psarbear = pd.Series(psarbear, name="psarbear", index=ohlc.index)
psarbull = pd.Series(psarbull, name="psarbull", index=ohlc.index)
psar_df = pd.concat([psar, psarbull, psarbear], axis=1)
return psar_df
def KST(ohlc, r1=10, r2=15, r3=20, r4=30, column="Close"):
"""Know Sure Thing"""
r1 = ROC(ohlc, r1, column).rolling(window=10).mean()
r2 = ROC(ohlc, r2, column).rolling(window=10).mean()
r3 = ROC(ohlc, r3, column).rolling(window=10).mean()
r4 = ROC(ohlc, r4, column).rolling(window=15).mean()
k = pd.Series((r1 * 1) + (r2 * 2) + (r3 * 3) + (r4 * 4), name="KST")
signal = pd.Series(k.rolling(window=10).mean(), name="signal")
return pd.concat([k, signal], axis=1)
def TSI(ohlc,long = 25,short = 13,signal = 13,column = "Close",adjust = True):
"""True Strength Index (TSI) is a momentum oscillator based on a double smoothing of price changes."""
## Double smoother price change
momentum = pd.Series(ohlc[column].diff()) ## 1 period momentum
_EMA25 = pd.Series(
momentum.ewm(span=long, min_periods=long - 1, adjust=adjust).mean(),
name="_price change EMA25",
)
_DEMA13 = pd.Series(
_EMA25.ewm(span=short, min_periods=short - 1, adjust=adjust).mean(),
name="_price change double smoothed DEMA13",
)
## Double smoothed absolute price change
absmomentum = pd.Series(ohlc[column].diff().abs())
_aEMA25 = pd.Series(
absmomentum.ewm(span=long, min_periods=long - 1, adjust=adjust).mean(),
name="_abs_price_change EMA25",
)
_aDEMA13 = pd.Series(
_aEMA25.ewm(span=short, min_periods=short - 1, adjust=adjust).mean(),
name="_abs_price_change double smoothed DEMA13",
)
TSI = pd.Series((_DEMA13 / _aDEMA13) * 100, name="TSI")
signal = pd.Series(
TSI.ewm(span=signal, min_periods=signal - 1, adjust=adjust).mean(),
name="signal",
)
return pd.concat([TSI, signal], axis=1)
def FISH(ohlc, period=10, adjust=True, high="High", low="Low"):
"""Fisher Transform"""
med = (ohlc[high] + ohlc[low]) / 2
ndaylow = med.rolling(window=period).min()
ndayhigh = med.rolling(window=period).max()
raw = (2 * ((med - ndaylow) / (ndayhigh - ndaylow))) - 1
smooth = raw.ewm(span=5, adjust=adjust).mean()
_smooth = smooth.fillna(0)
return pd.Series(
np.log((1 + _smooth) / (1 - _smooth)).ewm(span=3, adjust=adjust).mean(),
name=f"FISH_{period}"
)
def ICHIMOKU(ohlc, kijun_period=26, tenkan_period=9, senkou_period=52, chikou_period=26,
high="High", low="Low", close="Close", open="Open"):
"""Ichimoku Cloud"""
tenkan_sen = (ohlc[high].rolling(window=tenkan_period).max() +
ohlc[low].rolling(window=tenkan_period).min()) / 2
kijun_sen = (ohlc[high].rolling(window=kijun_period).max() +
ohlc[low].rolling(window=kijun_period).min()) / 2
senkou_span_a = pd.Series(((tenkan_sen + kijun_sen) / 2).shift(kijun_period), name="SENKOU_A")
senkou_span_b = pd.Series(((ohlc[high].rolling(window=senkou_period).max() +
ohlc[low].rolling(window=senkou_period).min()) / 2).shift(kijun_period), name="SENKOU_B")
chikou_span = pd.Series(ohlc[close].shift(-chikou_period), name="CHIKOU")
return pd.DataFrame({
"TENKAN": tenkan_sen,
"KIJUN": kijun_sen,
"SENKOU_A": senkou_span_a,
"SENKOU_B": senkou_span_b,
"CHIKOU": chikou_span
})
def DC(ohlc, period=20, high="High", low="Low", close="Close", adjust=True):
"""Donchian Channels"""
upper = ohlc[high].rolling(window=period).max()
lower = ohlc[low].rolling(window=period).min()
middle = (upper + lower) / 2
return pd.DataFrame({"DC_U": upper, "DC_L": lower, "DC_M": middle})
def MFI(ohlc, period=14, high="High", low="Low", close="Close", colvol="Volume"):
"""Money Flow Index"""
tp = TP(ohlc, high=high, low=low, column=close)
rmf = tp * ohlc[colvol] # Raw Money Flow
mf_sign = np.sign(tp.diff()) # Positive or negative money flow
pos_mf = np.where(mf_sign == 1, rmf, 0)
neg_mf = np.where(mf_sign == -1, rmf, 0)
pos_mf_sum = pd.Series(pos_mf).rolling(window=period).sum()
neg_mf_sum = pd.Series(neg_mf).rolling(window=period).sum()
mfratio = pos_mf_sum / neg_mf_sum
mfi = 100 - (100 / (1 + mfratio))
return pd.Series(mfi, name=f"{period} period MFI")
def MOM(ohlc, period = 10, column = "Close"):
"""Market momentum is measured by continually taking price differences for a fixed time interval.
To construct a 10-day momentum line, simply subtract the closing price 10 days ago from the last closing price.
This positive or negative value is then plotted around a zero line."""
return pd.Series(ohlc[column].diff(period), name="MOM".format(period))
def DYMI(ohlc, column = "Close", adjust = True):
"""
The Dynamic Momentum Index is a variable term RSI. The RSI term varies from 3 to 30. The variable
time period makes the RSI more responsive to short-term moves. The more volatile the price is,
the shorter the time period is. It is interpreted in the same way as the RSI, but provides signals earlier.
Readings below 30 are considered oversold, and levels over 70 are considered overbought. The indicator
oscillates between 0 and 100.
https://www.investopedia.com/terms/d/dynamicmomentumindex.asp
"""
def _get_time(close):
# Value available from 14th period
sd = close.rolling(5).std()
asd = sd.rolling(10).mean()
v = sd / asd
t = 14 / v.round()
t[t.isna()] = 0
t = t.map(lambda x: int(min(max(x, 5), 30)))
return t
def _dmi(index):
time = t.iloc[index]
if (index - time) < 0:
subset = ohlc.iloc[0:index]
else:
subset = ohlc.iloc[(index - time) : index]
return RSI(subset, period=time, column = column,adjust=adjust).values[-1]
dates = pd.Series(ohlc.index)
periods = pd.Series(data=range(14, len(dates)), index=ohlc.index[14:].values)
t = _get_time(ohlc[column])
return periods.map(lambda x: _dmi(x))
def VPT(ohlcv, colvol="Volume", column="Close", open="Open", high="High", low="Low"):
"""Volume Price Trend"""
hilow = (ohlcv[high] - ohlcv[low]) * 100
openclose = (ohlcv[column] - ohlcv[open]) * 100
vol = ohlcv[colvol] / hilow
spreadvol = (openclose * vol).cumsum()
vpt = spreadvol + spreadvol
return pd.Series(vpt, name="VPT")
def FVE(ohlcv, period=22, factor=0.3, colvol="Volume", column="Close", open="Open", high="High", low="Low"):
"""Fractal Volume Efficiency"""
mf = (ohlcv[column] - ((ohlcv[high] + ohlcv[low]) / 2))
smav = ohlcv[column].rolling(window=period).mean()
vol_shift = pd.Series(np.where(mf > factor * ohlcv[column] / 100,
ohlcv[colvol],
np.where(mf < -factor * ohlcv[column] / 100,
-ohlcv[colvol], 0)),
index=ohlcv.index)
_sum = vol_shift.rolling(window=period).sum()
return pd.Series((_sum / smav) / period * 100, name="FVE")
def PPO(ohlcv, fast=12, slow=26, signal=9, column="Close", colvol="Volume", adjust=True):
"""Price Percentage Oscillator"""
_fast = ohlcv[column].ewm(span=fast, adjust=adjust).mean()
_slow = ohlcv[column].ewm(span=slow, adjust=adjust).mean()
ppo = pd.Series(((_fast - _slow) / _slow) * 100, name="PPO")
signal_line = ppo.ewm(span=signal, adjust=adjust).mean()
histogram = pd.Series(ppo - signal_line, name="PPO_histo")
return pd.DataFrame({"PPO": ppo, "PPO_signal": signal_line, "PPO_histo": histogram})
def VW_MACD(ohlcv, period_fast=12, period_slow=26, signal=9, column="Close", colvol="Volume", adjust=True):
"""Volume Weighted MACD"""
vp = (ohlcv[column] * ohlcv[colvol]).ewm(span=period_fast, adjust=adjust).mean()
vslow = (ohlcv[column] * ohlcv[colvol]).ewm(span=period_slow, adjust=adjust).mean()
vfast = (ohlcv[column] * ohlcv[colvol]).ewm(span=period_fast, adjust=adjust).mean()
macd = pd.Series(vp - vslow, name="VW_MACD")
signal_line = macd.ewm(span=signal, adjust=adjust).mean()
return pd.DataFrame({"VW_MACD": macd, "Signal": signal_line})
def AO(ohlc, high="High", low="Low"):
"""Awesome Oscillator"""
median_price = (ohlc[high] + ohlc[low]) / 2
ao = median_price.rolling(window=5).mean() - median_price.rolling(window=34).mean()
return pd.Series(ao, name="AO")
def MI(ohlc, period=9, adjust=True, high="High", low="Low"):
"""Mass Index"""
_range = ohlc[high] - ohlc[low]
EMA9 = _range.ewm(span=period, ignore_na=False, adjust=adjust).mean()
DEMA9 = EMA9.ewm(span=period, ignore_na=False, adjust=adjust).mean()
mass = EMA9 / DEMA9
return pd.Series(mass.rolling(window=25).sum(), name="MI")
def PZO(ohlcv, period=14, column="Close", colvol="Volume", adjust=True):
"""Price Zone Oscillator"""
pzo = ohlcv[column].pct_change(period)
return pd.Series(pzo.ewm(span=period, adjust=adjust).mean(), name="PZO")
def UO(ohlc, period=14, high="High", low="Low", close="Close", column="Close"):
"""Ultimate Oscillator"""
bp = ohlc[column] - ohlc[[low, column]].min(axis=1)
tr = pd.concat([
ohlc[high] - ohlc[low],
abs(ohlc[high] - ohlc[close].shift()),
abs(ohlc[low] - ohlc[close].shift())
], axis=1).max(axis=1)
avg7 = bp.rolling(window=7).sum() / tr.rolling(window=7).sum()
avg14 = bp.rolling(window=14).sum() / tr.rolling(window=14).sum()
avg28 = bp.rolling(window=28).sum() / tr.rolling(window=28).sum()
uo = (avg7 * 4 + avg14 * 2 + avg28) / (4 + 2 + 1)
return pd.Series(uo * 100, name="UO")
def BASP(ohlc, period = 40, adjust = True,colvol="Volume",high="High",low="Low",close="Close"):
"""BASP indicator serves to identify buying and selling pressure."""
sp = ohlc[high] - ohlc[close]
bp = ohlc[close] - ohlc[low]
spavg = sp.ewm(span=period, adjust=adjust).mean()
bpavg = bp.ewm(span=period, adjust=adjust).mean()
nbp = bp / bpavg
nsp = sp / spavg
varg = ohlc[colvol].ewm(span=period, adjust=adjust).mean()
nv = ohlc[colvol] / varg
nbfraw = pd.Series(nbp * nv, name="Buy.")
nsfraw = pd.Series(nsp * nv, name="Sell.")
return pd.concat([nbfraw, nsfraw], axis=1)
def BASPN(ohlcv, period=40, adjust=True, colvol="Volume", high="High", low="Low", close="Close"):
"""Normalized Buyer/Seller Pressure"""
sp = ohlcv[high] - ohlcv[close]
bp = ohlcv[close] - ohlcv[low]
spavg = sp.ewm(span=period, adjust=adjust).mean()
bpavg = bp.ewm(span=period, adjust=adjust).mean()
nbp = bp / bpavg
nsp = sp / spavg
nbf = pd.Series((nbp * (ohlcv[colvol] / spavg)).ewm(span=20, adjust=adjust).mean(), name="Buy.")
nsf = pd.Series((nsp * (ohlcv[colvol] / spavg)).ewm(span=20, adjust=adjust).mean(), name="Sell.")
return pd.DataFrame({"BASPN_Buy": nbf, "BASPN_Sell": nsf})
def IFT_RSI(ohlc, rsi_period=5, wma_period=9, column="Close", adjust=True):
"""Inverse Fisher Transform RSI"""
rsi = RSI(ohlc, rsi_period, column, adjust)
v1 = pd.Series(0.1 * (rsi - 50), name="v1")
weights = np.arange(1, wma_period + 1)
d = (wma_period * (wma_period + 1)) / 2
_wma = v1.rolling(wma_period, min_periods=wma_period)
v2 = _wma.apply(lambda x: np.dot(x, weights) / d, raw=True)
ift = pd.Series(((v2 ** 2 - 1) / (v2 ** 2 + 1)), name="IFT_RSI")
return ift
def PIVOT(ohlc, open="Open", close="Close", high="High", low="Low"):
"""Classic Pivot Points"""
df = ohlc.shift()
pp = pd.Series((df[high] + df[low] + df[close]) / 3, name="pivot")
r1 = pd.Series(2 * pp - df[low], name="r1")
r2 = pd.Series(pp + (df[high] - df[low]), name="r2")
r3 = pd.Series(df[high] + 2 * (pp - df[low]), name="r3")
s1 = pd.Series(2 * pp - df[high], name="s1")
s2 = pd.Series(pp - (df[high] - df[low]), name="s2")
s3 = pd.Series(pp - 2 * (df[high] - df[low]), name="s3")
return pd.concat([pp, s1, s2, s3, r1, r2, r3], axis=1)
def PIVOT_FIB(ohlc, open="Open", close="Close", high="High", low="Low"):
"""Fibonacci Pivot Points"""
df = ohlc.shift()
pp = pd.Series((df[high] + df[low] + df[close]) / 3, name="pivot")
s1 = pd.Series(pp - 0.382 * (df[high] - df[low]), name="s1")
s2 = pd.Series(pp - 0.618 * (df[high] - df[low]), name="s2")
s3 = pd.Series(pp - 1.0 * (df[high] - df[low]), name="s3")
r1 = pd.Series(pp + 0.382 * (df[high] - df[low]), name="r1")
r2 = pd.Series(pp + 0.618 * (df[high] - df[low]), name="r2")
r3 = pd.Series(pp + 1.0 * (df[high] - df[low]), name="r3")
return pd.concat([pp, s1, s2, s3, r1, r2, r3], axis=1)
def KC(ohlc, period=20, atr_period=10, kc_mult=2, high="High", low="Low", column="Close", adjust=True):
"""Keltner Channels"""
tp = (ohlc[high] + ohlc[low] + ohlc[column]) / 3
kc_middle = tp.ewm(span=period, adjust=adjust).mean()
tr = pd.concat([
ohlc[high] - ohlc[low],
abs(ohlc[high] - ohlc[column].shift()),
abs(ohlc[low] - ohlc[column].shift())
], axis=1).max(axis=1)
mean_dev = tr.ewm(span=atr_period, adjust=adjust).mean()
kc_upper = kc_middle + kc_mult * mean_dev
kc_lower = kc_middle - kc_mult * mean_dev
return pd.DataFrame({
"KC_MIDDLE": kc_middle,
"KC_UPPER": kc_upper,
"KC_LOWER": kc_lower
})
def APZ(ohlc, period=21, dev_factor=2, column="Close", high="High", low="Low", adjust=True):
"""Adaptive Price Zone"""
ma = ohlc[column].ewm(span=period, adjust=adjust).mean()
std = ohlc[column].pct_change().rolling(window=period).std() * dev_factor
upper_band = ma + std * ohlc[column]
lower_band = ma - std * ohlc[column]
return pd.DataFrame({"APZ_UPPER": upper_band, "APZ_LOWER": lower_band})
def VZO(ohlc,period = 14,column = "Close",colvol="Volume",adjust = True):
"""VZO uses price, previous price and moving averages to compute its oscillating value.
It is a leading indicator that calculates buy and sell signals based on oversold / overbought conditions.
Oscillations between the 5% and 40% levels mark a bullish trend zone, while oscillations between -40% and 5% mark a bearish trend zone.
Meanwhile, readings above 40% signal an overbought condition, while readings above 60% signal an extremely overbought condition.
Alternatively, readings below -40% indicate an oversold condition, which becomes extremely oversold below -60%."""
sign = lambda a: (a > 0) - (a < 0)
r = ohlc[column].diff().apply(sign) * ohlc[colvol]
dvma = r.ewm(span=period, adjust=adjust).mean()
vma = ohlc[colvol].ewm(span=period, adjust=adjust).mean()
return pd.Series(100 * (dvma / vma), name="VZO")
def TR(ohlc,high="High",low="Low",close="Close"):
"""True Range is the maximum of three price ranges.
Most recent period's high minus the most recent period's low.
Absolute value of the most recent period's high minus the previous close.
Absolute value of the most recent period's low minus the previous close."""
TR1 = pd.Series(ohlc[high] - ohlc[low]).abs() # True Range = High less Low
TR2 = pd.Series(
ohlc[high] - ohlc[close].shift()
).abs() # True Range = High less Previous Close
TR3 = pd.Series(
ohlc[close].shift() - ohlc[low]
).abs() # True Range = Previous Close less Low
_TR = pd.concat([TR1, TR2, TR3], axis=1)
_TR["TR"] = _TR.max(axis=1)
return pd.Series(_TR["TR"], name="TR")
def ATR(ohlc, period = 14,high="High",low="Low",close="Close"):
"""Average True Range is moving average of True Range."""
mytr=TR(ohlc,high=high,low=low,close=close)
return pd.Series(
mytr.rolling(center=False, window=period).mean(),
name="{0} period ATR".format(period),
)
def CHANDELIER(ohlc, short_period=22, long_period=22, k=3, high="High", low="Low"):
"""Chandelier Exit"""
long_stop = ohlc[high].rolling(window=long_period).max() - ATR(ohlc, 22) * k
short_stop = ohlc[low].rolling(window=short_period).min() + ATR(ohlc, 22) * k
return pd.DataFrame({"CHANDELIER_Long": long_stop, "CHANDELIER_Short": short_stop})
|