|
|
|
|
|
import pandas as pd |
|
import numpy as np |
|
from math import sqrt |
|
|
|
def SMA(ohlc, period=14, column="Close"): |
|
"""Simple Moving Average""" |
|
return pd.Series(ohlc[column].rolling(window=period).mean(), name=f"SMA_{period}") |
|
|
|
def SMM(ohlc, period= 9, column= "Close"): |
|
""" |
|
Simple moving median, an alternative to moving average. SMA, when used to estimate the underlying trend in a time series, |
|
is susceptible to rare events such as rapid shocks or other anomalies. A more robust estimate of the trend is the simple moving median over n time periods. |
|
""" |
|
|
|
return pd.Series( |
|
ohlc[column].rolling(window=period).median(), |
|
name="{0} period SMM".format(period), |
|
) |
|
|
|
def SSMA(ohlc,period = 9, column = "Close",adjust = True): |
|
""" |
|
Smoothed simple moving average. |
|
|
|
:param ohlc: data |
|
:param period: range |
|
:param column: open/close/high/low column of the DataFrame |
|
:return: result Series |
|
""" |
|
|
|
return pd.Series( |
|
ohlc[column] |
|
.ewm(ignore_na=False, alpha=1.0 / period, min_periods=0, adjust=adjust) |
|
.mean(), |
|
name="{0} period SSMA".format(period), |
|
) |
|
|
|
def EMA(ohlc, period=14, column="Close", adjust=True): |
|
"""Exponential Moving Average""" |
|
return pd.Series(ohlc[column].ewm(span=period, adjust=adjust).mean(), name=f"EMA_{period}") |
|
|
|
def RSI(ohlc, period=14, column="Close", adjust=True): |
|
"""Relative Strength Index""" |
|
delta = ohlc[column].diff() |
|
up, down = delta.copy(), delta.copy() |
|
up[up < 0] = 0 |
|
down[down > 0] = 0 |
|
_gain = up.ewm(com=period - 1, adjust=adjust).mean() |
|
_loss = abs(down.ewm(com=period - 1, adjust=adjust).mean()) |
|
RS = _gain / _loss |
|
return pd.Series(100 - (100 / (1 + RS)), name=f"RSI_{period}") |
|
|
|
|
|
def DEMA(ohlc,period = 9,column = "Close",adjust = True): |
|
""" |
|
Double Exponential Moving Average - attempts to remove the inherent lag associated to Moving Averages |
|
by placing more weight on recent values. The name suggests this is achieved by applying a double exponential |
|
smoothing which is not the case. The name double comes from the fact that the value of an EMA (Exponential Moving Average) is doubled. |
|
To keep it in line with the actual data and to remove the lag the value 'EMA of EMA' is subtracted from the previously doubled EMA. |
|
Because EMA(EMA) is used in the calculation, DEMA needs 2 * period -1 samples to start producing values in contrast to the period |
|
samples needed by a regular EMA |
|
""" |
|
|
|
DEMA = ( |
|
2 * EMA(ohlc, period) |
|
- EMA(ohlc, period).ewm(span=period, adjust=adjust).mean() |
|
) |
|
|
|
return pd.Series(DEMA, name="{0} period DEMA".format(period)) |
|
|
|
def TEMA(ohlc, period = 9, adjust = True): |
|
""" |
|
Triple exponential moving average - attempts to remove the inherent lag associated to Moving Averages by placing more weight on recent values. |
|
The name suggests this is achieved by applying a triple exponential smoothing which is not the case. The name triple comes from the fact that the |
|
value of an EMA (Exponential Moving Average) is triple. |
|
To keep it in line with the actual data and to remove the lag the value 'EMA of EMA' is subtracted 3 times from the previously tripled EMA. |
|
Finally 'EMA of EMA of EMA' is added. |
|
Because EMA(EMA(EMA)) is used in the calculation, TEMA needs 3 * period - 2 samples to start producing values in contrast to the period samples |
|
needed by a regular EMA. |
|
""" |
|
|
|
triple_ema = 3 * EMA(ohlc, period) |
|
ema_ema_ema = ( |
|
EMA(ohlc, period) |
|
.ewm(ignore_na=False, span=period, adjust=adjust) |
|
.mean() |
|
.ewm(ignore_na=False, span=period, adjust=adjust) |
|
.mean() |
|
) |
|
|
|
TEMA = ( |
|
triple_ema |
|
- 3 * EMA(ohlc, period).ewm(span=period, adjust=adjust).mean() |
|
+ ema_ema_ema |
|
) |
|
|
|
return pd.Series(TEMA, name="{0} period TEMA".format(period)) |
|
|
|
def TRIMA(ohlc, period = 18,column="Close"): |
|
""" |
|
The Triangular Moving Average (TRIMA) [also known as TMA] represents an average of prices, |
|
but places weight on the middle prices of the time period. |
|
The calculations double-smooth the data using a window width that is one-half the length of the series. |
|
source: https://www.thebalance.com/triangular-moving-average-tma-description-and-uses-1031203 |
|
""" |
|
|
|
weights = np.concatenate([np.arange(1, period // 2 + 1), np.arange(period // 2, 0, -1)]) |
|
weights = weights / weights.sum() |
|
def triangular(x): |
|
return np.dot(x, weights) |
|
return pd.Series(ohlc[column].rolling(period).apply(triangular, raw=True), name=f"TRIMA_{period}") |
|
|
|
def TRIX(ohlc,period = 20,column = "Close",adjust = True): |
|
""" |
|
The TRIX indicator calculates the rate of change of a triple exponential moving average. |
|
The values oscillate around zero. Buy/sell signals are generated when the TRIX crosses above/below zero. |
|
A (typically) 9 period exponential moving average of the TRIX can be used as a signal line. |
|
A buy/sell signals are generated when the TRIX crosses above/below the signal line and is also above/below zero. |
|
|
|
The TRIX was developed by Jack K. Hutson, publisher of Technical Analysis of Stocks & Commodities magazine, |
|
and was introduced in Volume 1, Number 5 of that magazine. |
|
""" |
|
|
|
data = ohlc[column] |
|
|
|
def _ema(data, period, adjust): |
|
return pd.Series(data.ewm(span=period, adjust=adjust).mean()) |
|
|
|
m = _ema(_ema(_ema(data, period, adjust), period, adjust), period, adjust) |
|
|
|
return pd.Series(100 * (m.diff() / m), name="{0} period TRIX".format(period)) |
|
|
|
def VAMA(ohlcv,period = 8, column = "Close",colvol="Volume"): |
|
""" |
|
Volume Adjusted Moving Average |
|
""" |
|
|
|
vp = ohlcv[colvol] * ohlcv[column] |
|
volsum = ohlcv[colvol].rolling(window=period).mean() |
|
volRatio = pd.Series(vp / volsum, name="VAMA") |
|
cumSum = (volRatio * ohlcv[column]).rolling(window=period).sum() |
|
cumDiv = volRatio.rolling(window=period).sum() |
|
|
|
return pd.Series(cumSum / cumDiv, name="{0} period VAMA".format(period)) |
|
|
|
def ER(ohlc, period=10, column="Close"): |
|
"""Efficiency Ratio""" |
|
change = ohlc[column].diff(period).abs() |
|
total_change = ohlc[column].diff().abs().rolling(window=period).sum() |
|
return pd.Series(change / total_change, name="ER") |
|
|
|
def KAMA(ohlc, er=10, ema_fast=2, ema_slow=30, period=20, column="Close", adjust=True): |
|
"""Kaufman Adaptive Moving Average""" |
|
efficiency_ratio = ER(ohlc, er, column=column) |
|
fast_alpha = 2 / (ema_fast + 1) |
|
slow_alpha = 2 / (ema_slow + 1) |
|
smoothing_constant = (efficiency_ratio * (fast_alpha - slow_alpha) + slow_alpha) ** 2 |
|
|
|
sma = ohlc[column].rolling(window=period).mean() |
|
kama = [float("nan")] * len(ohlc) |
|
|
|
|
|
for i in range(period, len(ohlc)): |
|
if np.isnan(kama[i - 1]): |
|
kama[i] = sma.iloc[i] |
|
else: |
|
kama[i] = kama[i - 1] + smoothing_constant.iloc[i] * (ohlc[column].iloc[i] - kama[i - 1]) |
|
|
|
return pd.Series(kama, index=ohlc.index, name=f"{period} period KAMA") |
|
|
|
def ZLEMA(ohlc,period = 26,adjust = True,column = "Close"): |
|
"""ZLEMA is an abbreviation of Zero Lag Exponential Moving Average. It was developed by John Ehlers and Rick Way. |
|
ZLEMA is a kind of Exponential moving average but its main idea is to eliminate the lag arising from the very nature of the moving averages |
|
and other trend following indicators. As it follows price closer, it also provides better price averaging and responds better to price swings.""" |
|
|
|
lag = int((period - 1) / 2) |
|
|
|
ema = pd.Series( |
|
(ohlc[column] + (ohlc[column].diff(lag))), |
|
name="{0} period ZLEMA.".format(period), |
|
) |
|
|
|
zlema = pd.Series( |
|
ema.ewm(span=period, adjust=adjust).mean(), |
|
name="{0} period ZLEMA".format(period), |
|
) |
|
|
|
return zlema |
|
|
|
def WMA(ohlc, period=14, column="Close"): |
|
"""Weighted Moving Average""" |
|
weights = np.arange(1, period + 1) |
|
def linear(w): |
|
def _inner(x): |
|
return np.dot(x, w) / w.sum() |
|
return _inner |
|
close = ohlc[column] |
|
return pd.Series(close.rolling(period, min_periods=period).apply(linear(weights), raw=True), name=f"WMA_{period}") |
|
|
|
def HMA(ohlc, period=20, column="Close"): |
|
"""Hull Moving Average""" |
|
half_length = int(period / 2) |
|
sqrt_length = int(sqrt(period)) |
|
wma_half = WMA(ohlc, half_length, column) |
|
wma_full = WMA(ohlc, period, column) |
|
hma = WMA(pd.DataFrame({column: 2 * wma_half - wma_full}), sqrt_length, column) |
|
return hma.rename(f"HMA_{period}") |
|
|
|
def EVWMA(ohlcv, period=20, high="High", low="Low", close="Close", colvol="Volume", adjust=True): |
|
"""Ehlers Volatility Weighted Moving Average""" |
|
tr = pd.concat([ |
|
ohlcv[high] - ohlcv[low], |
|
abs(ohlcv[high] - ohlcv[close].shift()), |
|
abs(ohlcv[low] - ohlcv[close].shift()) |
|
], axis=1).max(axis=1) |
|
vol_weight = ohlcv[colvol] / tr.rolling(window=period).mean() |
|
return pd.Series((vol_weight * ohlcv[close]).ewm(span=period, adjust=adjust).mean(), name="EVWMA") |
|
|
|
def TP(ohlc,high="High",low="Low",column="Close"): |
|
"""Typical Price refers to the arithmetic average of the high, low, and closing prices for a given period.""" |
|
|
|
return pd.Series((ohlc[high] + ohlc[low] + ohlc[column]) / 3, name="TP") |
|
|
|
def VWAP(ohlcv,colvol="Volume"): |
|
""" |
|
The volume weighted average price (VWAP) is a trading benchmark used especially in pension plans. |
|
VWAP is calculated by adding up the dollars traded for every transaction (price multiplied by number of shares traded) and then dividing |
|
by the total shares traded for the day. |
|
""" |
|
|
|
return pd.Series( |
|
((ohlcv[colvol] * TP(ohlcv,open="Open",close="Close",high="High",low="Low")).cumsum()) / ohlcv[colvol].cumsum(), |
|
name="VWAP.", |
|
) |
|
|
|
def FRAMA(ohlc, period=20, batch=10, column="Close", adjust=True): |
|
"""Fractal Adaptive Moving Average""" |
|
assert period % 2 == 0, "FRAMA period must be even" |
|
c = ohlc[column].copy() |
|
window = batch * 2 |
|
hh = c.rolling(batch).max() |
|
ll = c.rolling(batch).min() |
|
n1 = (hh - ll) / batch |
|
n2 = n1.shift(batch) |
|
hh2 = c.rolling(window).max() |
|
ll2 = c.rolling(window).min() |
|
n3 = (hh2 - ll2) / window |
|
D = (np.log(n1 + n2) - np.log(n3)) / np.log(2) |
|
alp = np.exp(-4.6 * (D - 1)) |
|
alp = np.clip(alp, 0.01, 1).values |
|
filt = np.zeros(len(c)) |
|
for i in range(len(c)): |
|
if i < window: |
|
filt[i] = c.iloc[i] |
|
else: |
|
filt[i] = c.iloc[i] * alp[i] + (1 - alp[i]) * filt[i - 1] |
|
return pd.Series(filt, index=ohlc.index, name=f"FRAMA_{period}") |
|
|
|
def MACD(ohlc, period_fast = 12, period_slow = 26,signal = 9,column = "Close",adjust = True): |
|
""" |
|
MACD, MACD Signal and MACD difference. |
|
The MACD Line oscillates above and below the zero line, which is also known as the centerline. |
|
These crossovers signal that the 12-day EMA has crossed the 26-day EMA. The direction, of course, depends on the direction of the moving average cross. |
|
Positive MACD indicates that the 12-day EMA is above the 26-day EMA. Positive values increase as the shorter EMA diverges further from the longer EMA. |
|
This means upside momentum is increasing. Negative MACD values indicates that the 12-day EMA is below the 26-day EMA. |
|
Negative values increase as the shorter EMA diverges further below the longer EMA. This means downside momentum is increasing. |
|
|
|
Signal line crossovers are the most common MACD signals. The signal line is a 9-day EMA of the MACD Line. |
|
As a moving average of the indicator, it...curs when the MACD turns up and crosses above the signal line. |
|
A bearish crossover occurs when the MACD turns down and crosses below the signal line. |
|
""" |
|
|
|
EMA_fast = pd.Series( |
|
ohlc[column].ewm(ignore_na=False, span=period_fast, adjust=adjust).mean(), |
|
name="EMA_fast", |
|
) |
|
EMA_slow = pd.Series( |
|
ohlc[column].ewm(ignore_na=False, span=period_slow, adjust=adjust).mean(), |
|
name="EMA_slow", |
|
) |
|
MACD = pd.Series(EMA_fast - EMA_slow, name="MACD") |
|
MACD_signal = pd.Series( |
|
MACD.ewm(ignore_na=False, span=signal, adjust=adjust).mean(), name="SIGNAL" |
|
) |
|
|
|
return pd.concat([MACD, MACD_signal], axis=1) |
|
|
|
|
|
def BOLLINGER(ohlc, period=20, dev=2, column="Close"): |
|
"""Bollinger Bands""" |
|
sma = ohlc[column].rolling(window=period).mean() |
|
std = ohlc[column].rolling(window=period).std() |
|
upper_band = sma + std * dev |
|
lower_band = sma - std * dev |
|
return pd.DataFrame({"BB_UPPER": upper_band, "BB_LOWER": lower_band}) |
|
|
|
def STOCH(ohlc, period = 14,close="Close",high="High",low="Low"): |
|
"""Stochastic oscillator %K |
|
The stochastic oscillator is a momentum indicator comparing the closing price of a security |
|
to the range of its prices over a certain period of time. |
|
The sensitivity of the oscillator to market movements is reducible by adjusting that time |
|
period or by taking a moving average of the result. |
|
""" |
|
|
|
highest_high = ohlc[high].rolling(center=False, window=period).max() |
|
lowest_low = ohlc[low].rolling(center=False, window=period).min() |
|
|
|
STOCH = pd.Series( |
|
(ohlc[close] - lowest_low) / (highest_high - lowest_low) * 100, |
|
name="{0} period STOCH %K".format(period), |
|
) |
|
|
|
return STOCH |
|
|
|
def STOCHD(ohlc, period = 3, stoch_period = 14,close="Close",high="High",low="Low"): |
|
"""Stochastic oscillator %D |
|
STOCH%D is a 3 period simple moving average of %K. |
|
""" |
|
|
|
return pd.Series( |
|
STOCH(ohlc, period = stoch_period,close=close,high=high,low=low).rolling(center=False, window=period).mean(), |
|
name="{0} period STOCH %D.".format(period), |
|
) |
|
|
|
def STOCHRSI(ohlc, rsi_period=14, stoch_period=14, column="Close", adjust=True): |
|
"""Stochastic RSI""" |
|
rsi = RSI(ohlc, rsi_period, column, adjust) |
|
min_val = rsi.rolling(window=stoch_period).min() |
|
max_val = rsi.rolling(window=stoch_period).max() |
|
stochrsi = 100 * (rsi - min_val) / (max_val - min_val) |
|
return pd.Series(stochrsi, name=f"STOCHRSI_{rsi_period}_{stoch_period}") |
|
|
|
def CMO(ohlc, period=9, factor=100, column="Close", adjust=True): |
|
"""Chande Momentum Oscillator""" |
|
delta = ohlc[column].diff() |
|
up = delta.copy() |
|
down = delta.copy() |
|
up[up < 0] = 0 |
|
down[down > 0] = 0 |
|
_gain = up.ewm(com=period, adjust=adjust).mean() |
|
_loss = abs(down.ewm(com=period, adjust=adjust).mean()) |
|
return pd.Series(factor * ((_gain - _loss) / (_gain + _loss)), name="CMO") |
|
|
|
|
|
def EMV(ohlcv, period=14, high="High", low="Low", colvol="Volume"): |
|
"""Ease of Movement""" |
|
dm = ((ohlcv[high] + ohlcv[low]) / 2) - ((ohlcv[high].shift() + ohlcv[low].shift()) / 2) |
|
br = (ohlcv[colvol] / 100000000) / ((ohlcv[high] - ohlcv[low])) |
|
emv = dm / br |
|
return pd.Series(emv.rolling(window=period).mean(), name="EMV") |
|
|
|
|
|
def CHAIKIN(ohlcv, colvol="Volume", column="Close", high="High", low="Low", adjust=True): |
|
"""Chaikin Oscillator""" |
|
adl = ADL(ohlcv, colvol, column, high, low) |
|
return pd.Series(adl.ewm(span=3, adjust=adjust).mean() - adl.ewm(span=10, adjust=adjust).mean(), name="CHAIKIN") |
|
|
|
def ADL(ohlcv, colvol="Volume", column="Close", high="High", low="Low"): |
|
"""Accumulation/Distribution Line""" |
|
clv = ((ohlcv[column] - ohlcv[low]) - (ohlcv[high] - ohlcv[column])) / (ohlcv[high] - ohlcv[low]) |
|
clv = clv.fillna(0) |
|
return pd.Series((clv * ohlcv[colvol]).cumsum(), name="ADL") |
|
|
|
def OBV(ohlcv, column="Close", colvol="Volume"): |
|
"""On-Balance Volume""" |
|
obv = [0] |
|
for i in range(1, len(ohlcv)): |
|
if ohlcv[column].iloc[i] > ohlcv[column].iloc[i - 1]: |
|
obv.append(obv[-1] + ohlcv[colvol].iloc[i]) |
|
elif ohlcv[column].iloc[i] < ohlcv[column].iloc[i - 1]: |
|
obv.append(obv[-1] - ohlcv[colvol].iloc[i]) |
|
else: |
|
obv.append(obv[-1]) |
|
return pd.Series(obv, index=ohlcv.index, name="OBV") |
|
|
|
|
|
|
|
def ADX(ohlc, period=14, high="High", low="Low", close="Close", adjust=True): |
|
"""Average Directional Index""" |
|
tr1 = ohlc[high] - ohlc[low] |
|
tr2 = abs(ohlc[high] - ohlc[close].shift()) |
|
tr3 = abs(ohlc[low] - ohlc[close].shift()) |
|
tr = pd.concat([tr1, tr2, tr3], axis=1).max(axis=1) |
|
atr = tr.ewm(span=period, min_periods=period).mean() |
|
|
|
up_diff = ohlc[high].diff() |
|
down_diff = ohlc[low].diff() |
|
plus_dm = pd.Series(np.where((up_diff > down_diff) & (up_diff > 0), up_diff, 0), name="plus_dm") |
|
minus_dm = pd.Series(np.where((down_diff > up_diff) & (down_diff > 0), down_diff, 0), name="minus_dm") |
|
|
|
plus_di = 100 * (plus_dm.ewm(span=period, min_periods=period).mean() / atr) |
|
minus_di = 100 * (minus_dm.ewm(span=period, min_periods=period).mean() / atr) |
|
dx = 100 * abs(plus_di - minus_di) / (plus_di + minus_di) |
|
adx = dx.ewm(span=period, min_periods=period).mean() |
|
return pd.Series(adx, name=f"ADX_{period}") |
|
|
|
def EFI(ohlc, period=13, column="Close", colvol="Volume", adjust=True): |
|
"""Elder's Force Index""" |
|
fi1 = pd.Series(ohlc[colvol] * ohlc[column].diff()) |
|
return pd.Series(fi1.ewm(ignore_na=False, min_periods=9, span=10, adjust=adjust).mean(), name="EFI") |
|
|
|
|
|
def WOBV(ohlcv, column="Close", colvol="Volume"): |
|
"""Weighted On-Balance Volume""" |
|
obv = [0] |
|
for i in range(1, len(ohlcv)): |
|
delta = ohlcv[column].iloc[i] - ohlcv[column].iloc[i - 1] |
|
obv.append(obv[-1] + delta * ohlcv[colvol].iloc[i]) |
|
return pd.Series(obv, index=ohlcv.index, name="WOBV") |
|
|
|
|
|
def DMI(ohlc, period=14, high="High", low="Low", column="Close"): |
|
"""Directional Movement Index""" |
|
up_diff = ohlc[high].diff() |
|
down_diff = ohlc[low].diff() |
|
plus_dm = pd.Series(np.where((up_diff > down_diff) & (up_diff > 0), up_diff, 0), name="plus_dm") |
|
minus_dm = pd.Series(np.where((down_diff > up_diff) & (down_diff > 0), down_diff, 0), name="minus_dm") |
|
tr = pd.concat([ohlc[high] - ohlc[low], abs(ohlc[high] - ohlc[column].shift()), abs(ohlc[low] - ohlc[column].shift())], axis=1).max(axis=1) |
|
atr = tr.ewm(span=period, min_periods=period).mean() |
|
plus_di = 100 * (plus_dm.ewm(span=period, min_periods=period).mean() / atr) |
|
minus_di = 100 * (minus_dm.ewm(span=period, min_periods=period).mean() / atr) |
|
return pd.DataFrame({"+DI": plus_di, "-DI": minus_di}) |
|
|
|
def CFI(ohlcv, column="Close", colvol="Volume", adjust=True): |
|
"""Cumulative Force Index""" |
|
fi1 = pd.Series(ohlcv[colvol] * ohlcv[column].diff()) |
|
cfi = pd.Series(fi1.ewm(ignore_na=False, min_periods=9, span=10, adjust=adjust).mean(), name="CFI") |
|
return cfi.cumsum() |
|
|
|
def EBBP(ohlc, period=13, high="High", low="Low", column="Close", adjust=True): |
|
"""Elder Bull Power / Bear Power""" |
|
ema = ohlc[column].ewm(span=period, adjust=adjust).mean() |
|
bull_power = ohlc[high] - ema |
|
bear_power = ohlc[low] - ema |
|
return pd.DataFrame({"Bull": bull_power, "Bear": bear_power}, index=ohlc.index) |
|
|
|
def ROC(ohlc, period=10, column="Close"): |
|
"""Rate of Change""" |
|
return pd.Series(ohlc[column].pct_change(period) * 100, name=f"ROC_{period}") |
|
|
|
|
|
def CCI(ohlc, period=20, high="High", low="Low", close="Close"): |
|
"""Commodity Channel Index""" |
|
tp = (ohlc[high] + ohlc[low] + ohlc[close]) / 3 |
|
sma = tp.rolling(window=period).mean() |
|
mean_deviation = tp.rolling(window=period).apply(lambda x: np.fabs(x - x.mean()).mean()) |
|
cci = (tp - sma) / (0.015 * mean_deviation) |
|
return pd.Series(cci, name=f"CCI_{period}") |
|
|
|
def COPP(ohlc, adjust = True): |
|
"""The Coppock Curve is a momentum indicator, it signals buying opportunities when the indicator moved from negative territory to positive territory.""" |
|
|
|
roc1 = ROC(ohlc, 14) |
|
roc2 = ROC(ohlc, 11) |
|
|
|
return pd.Series( |
|
(roc1 + roc2).ewm(span=10, min_periods=9, adjust=adjust).mean(), |
|
name="Coppock Curve", |
|
) |
|
|
|
def VBM(ohlc, period=14, std_dev=2, column="Close"): |
|
"""Volatility-Based Momentum""" |
|
volatility = ohlc[column].pct_change().rolling(window=period).std() * np.sqrt(period) |
|
momentum = ohlc[column].pct_change(period) |
|
return pd.Series(momentum / volatility, name="VBM") |
|
|
|
|
|
def QSTICK(ohlc, period=10, open="Open", close="Close"): |
|
"""Q Stick Indicator""" |
|
return pd.Series(ohlc[close].pct_change(period) - ohlc[open].pct_change(period), name="QSTICK") |
|
|
|
def WTO(ohlc, channel_length=10, average_length=21, adjust=True): |
|
"""Wave Trend Oscillator""" |
|
ap = (ohlc["High"] + ohlc["Low"] + ohlc["Close"]) / 3 |
|
esa = ap.ewm(span=average_length, adjust=adjust).mean() |
|
d = pd.Series((ap - esa).abs().ewm(span=channel_length, adjust=adjust).mean(), name="d") |
|
ci = (ap - esa) / (0.015 * d) |
|
wt1 = pd.Series(ci.ewm(span=average_length, adjust=adjust).mean(), name="WT1.") |
|
wt2 = pd.Series(wt1.rolling(window=4).mean(), name="WT2.") |
|
return pd.concat([wt1, wt2], axis=1) |
|
|
|
def SAR(ohlc, af = 0.02, amax = 0.2,high="High",low="Low"): |
|
"""SAR stands for "stop and reverse," which is the actual indicator used in the system. |
|
SAR trails price as the trend extends over time. The indicator is below prices when prices are rising and above prices when prices are falling. |
|
In this regard, the indicator stops and reverses when the price trend reverses and breaks above or below the indicator.""" |
|
high1, low1 = ohlc[high], ohlc[low] |
|
|
|
|
|
sig0, xpt0, af0 = True, high1[0], af |
|
_sar = [low1[0] - (high1 - low1).std()] |
|
|
|
for i in range(1, len(ohlc)): |
|
sig1, xpt1, af1 = sig0, xpt0, af0 |
|
|
|
lmin = min(low1[i - 1], low1[i]) |
|
lmax = max(high1[i - 1], high1[i]) |
|
|
|
if sig1: |
|
sig0 = low1[i] > _sar[-1] |
|
xpt0 = max(lmax, xpt1) |
|
else: |
|
sig0 = high1[i] >= _sar[-1] |
|
xpt0 = min(lmin, xpt1) |
|
|
|
if sig0 == sig1: |
|
sari = _sar[-1] + (xpt1 - _sar[-1]) * af1 |
|
af0 = min(amax, af1 + af) |
|
|
|
if sig0: |
|
af0 = af0 if xpt0 > xpt1 else af1 |
|
sari = min(sari, lmin) |
|
else: |
|
af0 = af0 if xpt0 < xpt1 else af1 |
|
sari = max(sari, lmax) |
|
else: |
|
af0 = af |
|
sari = xpt0 |
|
|
|
_sar.append(sari) |
|
|
|
return pd.Series(_sar, index=ohlc.index) |
|
|
|
def PSAR(ohlc, iaf = 0.02, maxaf = 0.2,high="High",low="Low",close="Close"): |
|
""" |
|
The parabolic SAR indicator, developed by J. Wells Wilder, is used by traders to determine trend direction and potential reversals in price. |
|
The indicator uses a trailing stop and reverse method called "SAR," or stop and reverse, to identify suitable exit and entry points. |
|
Traders also refer to the indicator as the parabolic stop and reverse, parabolic SAR, or PSAR. |
|
https://www.investopedia.com/terms/p/parabolicindicator.asp |
|
https://virtualizedfrog.wordpress.com/2014/12/09/parabolic-sar-implementation-in-python/ |
|
""" |
|
|
|
length = len(ohlc) |
|
high1, low1, close1 = ohlc[high], ohlc[low], ohlc[close] |
|
psar = close1[0 : len(close1)] |
|
psarbull = [None] * length |
|
psarbear = [None] * length |
|
bull = True |
|
af = iaf |
|
hp = high1[0] |
|
lp = low1[0] |
|
|
|
for i in range(2, length): |
|
if bull: |
|
psar[i] = psar[i - 1] + af * (hp - psar[i - 1]) |
|
else: |
|
psar[i] = psar[i - 1] + af * (lp - psar[i - 1]) |
|
|
|
reverse = False |
|
|
|
if bull: |
|
if low1[i] < psar[i]: |
|
bull = False |
|
reverse = True |
|
psar[i] = hp |
|
lp = low1[i] |
|
af = iaf |
|
else: |
|
if high1[i] > psar[i]: |
|
bull = True |
|
reverse = True |
|
psar[i] = lp |
|
hp = high1[i] |
|
af = iaf |
|
|
|
if not reverse: |
|
if bull: |
|
if high1[i] > hp: |
|
hp = high1[i] |
|
af = min(af + iaf, maxaf) |
|
if low1[i - 1] < psar[i]: |
|
psar[i] = low1[i - 1] |
|
if low1[i - 2] < psar[i]: |
|
psar[i] = low1[i - 2] |
|
else: |
|
if low1[i] < lp: |
|
lp = low1[i] |
|
af = min(af + iaf, maxaf) |
|
if high1[i - 1] > psar[i]: |
|
psar[i] = high1[i - 1] |
|
if high1[i - 2] > psar[i]: |
|
psar[i] = high1[i - 2] |
|
|
|
if bull: |
|
psarbull[i] = psar[i] |
|
else: |
|
psarbear[i] = psar[i] |
|
|
|
psar = pd.Series(psar, name="psar", index=ohlc.index) |
|
psarbear = pd.Series(psarbear, name="psarbear", index=ohlc.index) |
|
psarbull = pd.Series(psarbull, name="psarbull", index=ohlc.index) |
|
|
|
psar_df = pd.concat([psar, psarbull, psarbear], axis=1) |
|
|
|
return psar_df |
|
|
|
def KST(ohlc, r1=10, r2=15, r3=20, r4=30, column="Close"): |
|
"""Know Sure Thing""" |
|
r1 = ROC(ohlc, r1, column).rolling(window=10).mean() |
|
r2 = ROC(ohlc, r2, column).rolling(window=10).mean() |
|
r3 = ROC(ohlc, r3, column).rolling(window=10).mean() |
|
r4 = ROC(ohlc, r4, column).rolling(window=15).mean() |
|
k = pd.Series((r1 * 1) + (r2 * 2) + (r3 * 3) + (r4 * 4), name="KST") |
|
signal = pd.Series(k.rolling(window=10).mean(), name="signal") |
|
return pd.concat([k, signal], axis=1) |
|
|
|
def TSI(ohlc,long = 25,short = 13,signal = 13,column = "Close",adjust = True): |
|
"""True Strength Index (TSI) is a momentum oscillator based on a double smoothing of price changes.""" |
|
|
|
|
|
momentum = pd.Series(ohlc[column].diff()) |
|
_EMA25 = pd.Series( |
|
momentum.ewm(span=long, min_periods=long - 1, adjust=adjust).mean(), |
|
name="_price change EMA25", |
|
) |
|
_DEMA13 = pd.Series( |
|
_EMA25.ewm(span=short, min_periods=short - 1, adjust=adjust).mean(), |
|
name="_price change double smoothed DEMA13", |
|
) |
|
|
|
|
|
absmomentum = pd.Series(ohlc[column].diff().abs()) |
|
_aEMA25 = pd.Series( |
|
absmomentum.ewm(span=long, min_periods=long - 1, adjust=adjust).mean(), |
|
name="_abs_price_change EMA25", |
|
) |
|
_aDEMA13 = pd.Series( |
|
_aEMA25.ewm(span=short, min_periods=short - 1, adjust=adjust).mean(), |
|
name="_abs_price_change double smoothed DEMA13", |
|
) |
|
|
|
TSI = pd.Series((_DEMA13 / _aDEMA13) * 100, name="TSI") |
|
signal = pd.Series( |
|
TSI.ewm(span=signal, min_periods=signal - 1, adjust=adjust).mean(), |
|
name="signal", |
|
) |
|
|
|
return pd.concat([TSI, signal], axis=1) |
|
|
|
def FISH(ohlc, period=10, adjust=True, high="High", low="Low"): |
|
"""Fisher Transform""" |
|
med = (ohlc[high] + ohlc[low]) / 2 |
|
ndaylow = med.rolling(window=period).min() |
|
ndayhigh = med.rolling(window=period).max() |
|
raw = (2 * ((med - ndaylow) / (ndayhigh - ndaylow))) - 1 |
|
smooth = raw.ewm(span=5, adjust=adjust).mean() |
|
_smooth = smooth.fillna(0) |
|
return pd.Series( |
|
np.log((1 + _smooth) / (1 - _smooth)).ewm(span=3, adjust=adjust).mean(), |
|
name=f"FISH_{period}" |
|
) |
|
|
|
def ICHIMOKU(ohlc, kijun_period=26, tenkan_period=9, senkou_period=52, chikou_period=26, |
|
high="High", low="Low", close="Close", open="Open"): |
|
"""Ichimoku Cloud""" |
|
tenkan_sen = (ohlc[high].rolling(window=tenkan_period).max() + |
|
ohlc[low].rolling(window=tenkan_period).min()) / 2 |
|
kijun_sen = (ohlc[high].rolling(window=kijun_period).max() + |
|
ohlc[low].rolling(window=kijun_period).min()) / 2 |
|
senkou_span_a = pd.Series(((tenkan_sen + kijun_sen) / 2).shift(kijun_period), name="SENKOU_A") |
|
senkou_span_b = pd.Series(((ohlc[high].rolling(window=senkou_period).max() + |
|
ohlc[low].rolling(window=senkou_period).min()) / 2).shift(kijun_period), name="SENKOU_B") |
|
chikou_span = pd.Series(ohlc[close].shift(-chikou_period), name="CHIKOU") |
|
return pd.DataFrame({ |
|
"TENKAN": tenkan_sen, |
|
"KIJUN": kijun_sen, |
|
"SENKOU_A": senkou_span_a, |
|
"SENKOU_B": senkou_span_b, |
|
"CHIKOU": chikou_span |
|
}) |
|
|
|
|
|
def DC(ohlc, period=20, high="High", low="Low", close="Close", adjust=True): |
|
"""Donchian Channels""" |
|
upper = ohlc[high].rolling(window=period).max() |
|
lower = ohlc[low].rolling(window=period).min() |
|
middle = (upper + lower) / 2 |
|
return pd.DataFrame({"DC_U": upper, "DC_L": lower, "DC_M": middle}) |
|
|
|
|
|
|
|
def MFI(ohlc, period=14, high="High", low="Low", close="Close", colvol="Volume"): |
|
"""Money Flow Index""" |
|
tp = TP(ohlc, high=high, low=low, column=close) |
|
rmf = tp * ohlc[colvol] |
|
mf_sign = np.sign(tp.diff()) |
|
pos_mf = np.where(mf_sign == 1, rmf, 0) |
|
neg_mf = np.where(mf_sign == -1, rmf, 0) |
|
|
|
pos_mf_sum = pd.Series(pos_mf).rolling(window=period).sum() |
|
neg_mf_sum = pd.Series(neg_mf).rolling(window=period).sum() |
|
|
|
mfratio = pos_mf_sum / neg_mf_sum |
|
mfi = 100 - (100 / (1 + mfratio)) |
|
|
|
return pd.Series(mfi, name=f"{period} period MFI") |
|
|
|
def MOM(ohlc, period = 10, column = "Close"): |
|
"""Market momentum is measured by continually taking price differences for a fixed time interval. |
|
To construct a 10-day momentum line, simply subtract the closing price 10 days ago from the last closing price. |
|
This positive or negative value is then plotted around a zero line.""" |
|
|
|
return pd.Series(ohlc[column].diff(period), name="MOM".format(period)) |
|
|
|
def DYMI(ohlc, column = "Close", adjust = True): |
|
""" |
|
The Dynamic Momentum Index is a variable term RSI. The RSI term varies from 3 to 30. The variable |
|
time period makes the RSI more responsive to short-term moves. The more volatile the price is, |
|
the shorter the time period is. It is interpreted in the same way as the RSI, but provides signals earlier. |
|
Readings below 30 are considered oversold, and levels over 70 are considered overbought. The indicator |
|
oscillates between 0 and 100. |
|
https://www.investopedia.com/terms/d/dynamicmomentumindex.asp |
|
""" |
|
|
|
def _get_time(close): |
|
|
|
sd = close.rolling(5).std() |
|
asd = sd.rolling(10).mean() |
|
v = sd / asd |
|
t = 14 / v.round() |
|
t[t.isna()] = 0 |
|
t = t.map(lambda x: int(min(max(x, 5), 30))) |
|
return t |
|
|
|
def _dmi(index): |
|
time = t.iloc[index] |
|
if (index - time) < 0: |
|
subset = ohlc.iloc[0:index] |
|
else: |
|
subset = ohlc.iloc[(index - time) : index] |
|
return RSI(subset, period=time, column = column,adjust=adjust).values[-1] |
|
|
|
dates = pd.Series(ohlc.index) |
|
periods = pd.Series(data=range(14, len(dates)), index=ohlc.index[14:].values) |
|
t = _get_time(ohlc[column]) |
|
return periods.map(lambda x: _dmi(x)) |
|
|
|
def VPT(ohlcv, colvol="Volume", column="Close", open="Open", high="High", low="Low"): |
|
"""Volume Price Trend""" |
|
hilow = (ohlcv[high] - ohlcv[low]) * 100 |
|
openclose = (ohlcv[column] - ohlcv[open]) * 100 |
|
vol = ohlcv[colvol] / hilow |
|
spreadvol = (openclose * vol).cumsum() |
|
vpt = spreadvol + spreadvol |
|
return pd.Series(vpt, name="VPT") |
|
|
|
def FVE(ohlcv, period=22, factor=0.3, colvol="Volume", column="Close", open="Open", high="High", low="Low"): |
|
"""Fractal Volume Efficiency""" |
|
mf = (ohlcv[column] - ((ohlcv[high] + ohlcv[low]) / 2)) |
|
smav = ohlcv[column].rolling(window=period).mean() |
|
vol_shift = pd.Series(np.where(mf > factor * ohlcv[column] / 100, |
|
ohlcv[colvol], |
|
np.where(mf < -factor * ohlcv[column] / 100, |
|
-ohlcv[colvol], 0)), |
|
index=ohlcv.index) |
|
_sum = vol_shift.rolling(window=period).sum() |
|
return pd.Series((_sum / smav) / period * 100, name="FVE") |
|
|
|
def PPO(ohlcv, fast=12, slow=26, signal=9, column="Close", colvol="Volume", adjust=True): |
|
"""Price Percentage Oscillator""" |
|
_fast = ohlcv[column].ewm(span=fast, adjust=adjust).mean() |
|
_slow = ohlcv[column].ewm(span=slow, adjust=adjust).mean() |
|
ppo = pd.Series(((_fast - _slow) / _slow) * 100, name="PPO") |
|
signal_line = ppo.ewm(span=signal, adjust=adjust).mean() |
|
histogram = pd.Series(ppo - signal_line, name="PPO_histo") |
|
return pd.DataFrame({"PPO": ppo, "PPO_signal": signal_line, "PPO_histo": histogram}) |
|
|
|
def VW_MACD(ohlcv, period_fast=12, period_slow=26, signal=9, column="Close", colvol="Volume", adjust=True): |
|
"""Volume Weighted MACD""" |
|
vp = (ohlcv[column] * ohlcv[colvol]).ewm(span=period_fast, adjust=adjust).mean() |
|
vslow = (ohlcv[column] * ohlcv[colvol]).ewm(span=period_slow, adjust=adjust).mean() |
|
vfast = (ohlcv[column] * ohlcv[colvol]).ewm(span=period_fast, adjust=adjust).mean() |
|
macd = pd.Series(vp - vslow, name="VW_MACD") |
|
signal_line = macd.ewm(span=signal, adjust=adjust).mean() |
|
return pd.DataFrame({"VW_MACD": macd, "Signal": signal_line}) |
|
|
|
|
|
def AO(ohlc, high="High", low="Low"): |
|
"""Awesome Oscillator""" |
|
median_price = (ohlc[high] + ohlc[low]) / 2 |
|
ao = median_price.rolling(window=5).mean() - median_price.rolling(window=34).mean() |
|
return pd.Series(ao, name="AO") |
|
|
|
def MI(ohlc, period=9, adjust=True, high="High", low="Low"): |
|
"""Mass Index""" |
|
_range = ohlc[high] - ohlc[low] |
|
EMA9 = _range.ewm(span=period, ignore_na=False, adjust=adjust).mean() |
|
DEMA9 = EMA9.ewm(span=period, ignore_na=False, adjust=adjust).mean() |
|
mass = EMA9 / DEMA9 |
|
return pd.Series(mass.rolling(window=25).sum(), name="MI") |
|
|
|
|
|
def PZO(ohlcv, period=14, column="Close", colvol="Volume", adjust=True): |
|
"""Price Zone Oscillator""" |
|
pzo = ohlcv[column].pct_change(period) |
|
return pd.Series(pzo.ewm(span=period, adjust=adjust).mean(), name="PZO") |
|
|
|
def UO(ohlc, period=14, high="High", low="Low", close="Close", column="Close"): |
|
"""Ultimate Oscillator""" |
|
bp = ohlc[column] - ohlc[[low, column]].min(axis=1) |
|
tr = pd.concat([ |
|
ohlc[high] - ohlc[low], |
|
abs(ohlc[high] - ohlc[close].shift()), |
|
abs(ohlc[low] - ohlc[close].shift()) |
|
], axis=1).max(axis=1) |
|
avg7 = bp.rolling(window=7).sum() / tr.rolling(window=7).sum() |
|
avg14 = bp.rolling(window=14).sum() / tr.rolling(window=14).sum() |
|
avg28 = bp.rolling(window=28).sum() / tr.rolling(window=28).sum() |
|
uo = (avg7 * 4 + avg14 * 2 + avg28) / (4 + 2 + 1) |
|
return pd.Series(uo * 100, name="UO") |
|
|
|
def BASP(ohlc, period = 40, adjust = True,colvol="Volume",high="High",low="Low",close="Close"): |
|
"""BASP indicator serves to identify buying and selling pressure.""" |
|
|
|
sp = ohlc[high] - ohlc[close] |
|
bp = ohlc[close] - ohlc[low] |
|
spavg = sp.ewm(span=period, adjust=adjust).mean() |
|
bpavg = bp.ewm(span=period, adjust=adjust).mean() |
|
|
|
nbp = bp / bpavg |
|
nsp = sp / spavg |
|
|
|
varg = ohlc[colvol].ewm(span=period, adjust=adjust).mean() |
|
nv = ohlc[colvol] / varg |
|
|
|
nbfraw = pd.Series(nbp * nv, name="Buy.") |
|
nsfraw = pd.Series(nsp * nv, name="Sell.") |
|
|
|
return pd.concat([nbfraw, nsfraw], axis=1) |
|
|
|
def BASPN(ohlcv, period=40, adjust=True, colvol="Volume", high="High", low="Low", close="Close"): |
|
"""Normalized Buyer/Seller Pressure""" |
|
sp = ohlcv[high] - ohlcv[close] |
|
bp = ohlcv[close] - ohlcv[low] |
|
spavg = sp.ewm(span=period, adjust=adjust).mean() |
|
bpavg = bp.ewm(span=period, adjust=adjust).mean() |
|
nbp = bp / bpavg |
|
nsp = sp / spavg |
|
nbf = pd.Series((nbp * (ohlcv[colvol] / spavg)).ewm(span=20, adjust=adjust).mean(), name="Buy.") |
|
nsf = pd.Series((nsp * (ohlcv[colvol] / spavg)).ewm(span=20, adjust=adjust).mean(), name="Sell.") |
|
return pd.DataFrame({"BASPN_Buy": nbf, "BASPN_Sell": nsf}) |
|
|
|
def IFT_RSI(ohlc, rsi_period=5, wma_period=9, column="Close", adjust=True): |
|
"""Inverse Fisher Transform RSI""" |
|
rsi = RSI(ohlc, rsi_period, column, adjust) |
|
v1 = pd.Series(0.1 * (rsi - 50), name="v1") |
|
weights = np.arange(1, wma_period + 1) |
|
d = (wma_period * (wma_period + 1)) / 2 |
|
_wma = v1.rolling(wma_period, min_periods=wma_period) |
|
v2 = _wma.apply(lambda x: np.dot(x, weights) / d, raw=True) |
|
ift = pd.Series(((v2 ** 2 - 1) / (v2 ** 2 + 1)), name="IFT_RSI") |
|
return ift |
|
|
|
|
|
def PIVOT(ohlc, open="Open", close="Close", high="High", low="Low"): |
|
"""Classic Pivot Points""" |
|
df = ohlc.shift() |
|
pp = pd.Series((df[high] + df[low] + df[close]) / 3, name="pivot") |
|
r1 = pd.Series(2 * pp - df[low], name="r1") |
|
r2 = pd.Series(pp + (df[high] - df[low]), name="r2") |
|
r3 = pd.Series(df[high] + 2 * (pp - df[low]), name="r3") |
|
s1 = pd.Series(2 * pp - df[high], name="s1") |
|
s2 = pd.Series(pp - (df[high] - df[low]), name="s2") |
|
s3 = pd.Series(pp - 2 * (df[high] - df[low]), name="s3") |
|
return pd.concat([pp, s1, s2, s3, r1, r2, r3], axis=1) |
|
|
|
def PIVOT_FIB(ohlc, open="Open", close="Close", high="High", low="Low"): |
|
"""Fibonacci Pivot Points""" |
|
df = ohlc.shift() |
|
pp = pd.Series((df[high] + df[low] + df[close]) / 3, name="pivot") |
|
s1 = pd.Series(pp - 0.382 * (df[high] - df[low]), name="s1") |
|
s2 = pd.Series(pp - 0.618 * (df[high] - df[low]), name="s2") |
|
s3 = pd.Series(pp - 1.0 * (df[high] - df[low]), name="s3") |
|
r1 = pd.Series(pp + 0.382 * (df[high] - df[low]), name="r1") |
|
r2 = pd.Series(pp + 0.618 * (df[high] - df[low]), name="r2") |
|
r3 = pd.Series(pp + 1.0 * (df[high] - df[low]), name="r3") |
|
return pd.concat([pp, s1, s2, s3, r1, r2, r3], axis=1) |
|
|
|
def KC(ohlc, period=20, atr_period=10, kc_mult=2, high="High", low="Low", column="Close", adjust=True): |
|
"""Keltner Channels""" |
|
tp = (ohlc[high] + ohlc[low] + ohlc[column]) / 3 |
|
kc_middle = tp.ewm(span=period, adjust=adjust).mean() |
|
tr = pd.concat([ |
|
ohlc[high] - ohlc[low], |
|
abs(ohlc[high] - ohlc[column].shift()), |
|
abs(ohlc[low] - ohlc[column].shift()) |
|
], axis=1).max(axis=1) |
|
mean_dev = tr.ewm(span=atr_period, adjust=adjust).mean() |
|
kc_upper = kc_middle + kc_mult * mean_dev |
|
kc_lower = kc_middle - kc_mult * mean_dev |
|
return pd.DataFrame({ |
|
"KC_MIDDLE": kc_middle, |
|
"KC_UPPER": kc_upper, |
|
"KC_LOWER": kc_lower |
|
}) |
|
|
|
def APZ(ohlc, period=21, dev_factor=2, column="Close", high="High", low="Low", adjust=True): |
|
"""Adaptive Price Zone""" |
|
ma = ohlc[column].ewm(span=period, adjust=adjust).mean() |
|
std = ohlc[column].pct_change().rolling(window=period).std() * dev_factor |
|
upper_band = ma + std * ohlc[column] |
|
lower_band = ma - std * ohlc[column] |
|
return pd.DataFrame({"APZ_UPPER": upper_band, "APZ_LOWER": lower_band}) |
|
|
|
def VZO(ohlc,period = 14,column = "Close",colvol="Volume",adjust = True): |
|
"""VZO uses price, previous price and moving averages to compute its oscillating value. |
|
It is a leading indicator that calculates buy and sell signals based on oversold / overbought conditions. |
|
Oscillations between the 5% and 40% levels mark a bullish trend zone, while oscillations between -40% and 5% mark a bearish trend zone. |
|
Meanwhile, readings above 40% signal an overbought condition, while readings above 60% signal an extremely overbought condition. |
|
Alternatively, readings below -40% indicate an oversold condition, which becomes extremely oversold below -60%.""" |
|
|
|
sign = lambda a: (a > 0) - (a < 0) |
|
r = ohlc[column].diff().apply(sign) * ohlc[colvol] |
|
dvma = r.ewm(span=period, adjust=adjust).mean() |
|
vma = ohlc[colvol].ewm(span=period, adjust=adjust).mean() |
|
|
|
return pd.Series(100 * (dvma / vma), name="VZO") |
|
|
|
|
|
|
|
def TR(ohlc,high="High",low="Low",close="Close"): |
|
"""True Range is the maximum of three price ranges. |
|
Most recent period's high minus the most recent period's low. |
|
Absolute value of the most recent period's high minus the previous close. |
|
Absolute value of the most recent period's low minus the previous close.""" |
|
|
|
TR1 = pd.Series(ohlc[high] - ohlc[low]).abs() |
|
|
|
TR2 = pd.Series( |
|
ohlc[high] - ohlc[close].shift() |
|
).abs() |
|
|
|
TR3 = pd.Series( |
|
ohlc[close].shift() - ohlc[low] |
|
).abs() |
|
|
|
_TR = pd.concat([TR1, TR2, TR3], axis=1) |
|
|
|
_TR["TR"] = _TR.max(axis=1) |
|
|
|
return pd.Series(_TR["TR"], name="TR") |
|
|
|
def ATR(ohlc, period = 14,high="High",low="Low",close="Close"): |
|
"""Average True Range is moving average of True Range.""" |
|
|
|
mytr=TR(ohlc,high=high,low=low,close=close) |
|
return pd.Series( |
|
mytr.rolling(center=False, window=period).mean(), |
|
name="{0} period ATR".format(period), |
|
) |
|
|
|
def CHANDELIER(ohlc, short_period=22, long_period=22, k=3, high="High", low="Low"): |
|
"""Chandelier Exit""" |
|
long_stop = ohlc[high].rolling(window=long_period).max() - ATR(ohlc, 22) * k |
|
short_stop = ohlc[low].rolling(window=short_period).min() + ATR(ohlc, 22) * k |
|
return pd.DataFrame({"CHANDELIER_Long": long_stop, "CHANDELIER_Short": short_stop}) |
|
|