lucifer7210 commited on
Commit
ba45dba
Β·
verified Β·
1 Parent(s): 98fc3ed

Create app.py

Browse files
Files changed (1) hide show
  1. app.py +893 -0
app.py ADDED
@@ -0,0 +1,893 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import streamlit as st
2
+ import pandas as pd
3
+ import numpy as np
4
+ import yfinance as yf
5
+ import plotly.graph_objects as go
6
+ from plotly.subplots import make_subplots
7
+ import warnings
8
+ warnings.filterwarnings('ignore')
9
+ from curl_cffi import requests
10
+ session = requests.Session(impersonate="chrome")
11
+
12
+ # Import all technical indicators from your file
13
+ from technical_indicators import *
14
+
15
+ # Page configuration
16
+ st.set_page_config(
17
+ page_title="Technical Analysis Dashboard",
18
+ page_icon="πŸ“ˆ",
19
+ layout="wide",
20
+ initial_sidebar_state="expanded"
21
+ )
22
+
23
+ # Custom CSS for better styling
24
+ st.markdown("""
25
+ <style>
26
+ .main-header {
27
+ font-size: 2.5rem;
28
+ font-weight: bold;
29
+ color: #1f77b4;
30
+ text-align: center;
31
+ margin-bottom: 2rem;
32
+ }
33
+ .sub-header {
34
+ font-size: 1.5rem;
35
+ font-weight: bold;
36
+ text-align: center;
37
+ margin-bottom: 1rem;
38
+ }
39
+ .metric-container {
40
+ background-color: #f0f2f6;
41
+ padding: 1rem;
42
+ border-radius: 0.5rem;
43
+ margin: 0.5rem 0;
44
+ }
45
+ .indicator-section {
46
+ background-color: #ffffff;
47
+ padding: 1.5rem;
48
+ border-radius: 0.5rem;
49
+ margin: 1rem 0;
50
+ border: 1px solid #e0e0e0;
51
+ }
52
+ </style>
53
+ """, unsafe_allow_html=True)
54
+
55
+ # Title
56
+ st.markdown('<h1 class="main-header">πŸ“ˆ Technical Analysis Dashboard</h1>', unsafe_allow_html=True)
57
+ st.markdown('<h3 class="sub-header">Developed By Zane Vijay Falcao</h3>', unsafe_allow_html=True)
58
+ st.divider()
59
+ # Sidebar for inputs
60
+ with st.sidebar:
61
+ st.header("πŸ“Š Configuration")
62
+
63
+ # Stock symbol input
64
+ symbol = st.text_input("Stock Symbol", value="AAPL", help="Enter stock symbol (e.g., AAPL, GOOGL, MSFT)")
65
+
66
+ # Time period selection
67
+ period = st.selectbox(
68
+ "Time Period",
69
+ ["1mo", "3mo", "6mo", "1y", "2y", "5y", "max"],
70
+ index=3
71
+ )
72
+
73
+ # Interval selection
74
+ interval = st.selectbox(
75
+ "Data Interval",
76
+ ["1d", "5d", "1wk", "1mo"],
77
+ index=0
78
+ )
79
+
80
+ st.divider()
81
+
82
+ # Indicator Categories
83
+ st.header("πŸ“ˆ Select Indicators")
84
+
85
+ # Trend Indicators
86
+ with st.expander("Trend Indicators", expanded=True):
87
+ show_sma = st.checkbox("Simple Moving Average (SMA)", value=True)
88
+ show_ema = st.checkbox("Exponential Moving Average (EMA)", value=True)
89
+ show_hma = st.checkbox("Hull Moving Average (HMA)")
90
+ show_wma = st.checkbox("Weighted Moving Average (WMA)")
91
+ show_kama = st.checkbox("Kaufman Adaptive Moving Average (KAMA)")
92
+ show_frama = st.checkbox("Fractal Adaptive Moving Average (FRAMA)")
93
+ show_evwma = st.checkbox("Ehlers Volatility Weighted MA (EVWMA)")
94
+ show_vwap = st.checkbox("Volume Weighted Average Price (VWAP)")
95
+
96
+ # Momentum Indicators
97
+ with st.expander("Momentum Indicators", expanded=True):
98
+ show_rsi = st.checkbox("Relative Strength Index (RSI)", value=True)
99
+ show_macd = st.checkbox("MACD", value=True)
100
+ show_stochrsi = st.checkbox("Stochastic RSI")
101
+ show_cmo = st.checkbox("Chande Momentum Oscillator (CMO)")
102
+ show_roc = st.checkbox("Rate of Change (ROC)")
103
+ show_tsi = st.checkbox("True Strength Index (TSI)")
104
+ show_kst = st.checkbox("Know Sure Thing (KST)")
105
+ show_ppo = st.checkbox("Price Percentage Oscillator (PPO)")
106
+ show_uo = st.checkbox("Ultimate Oscillator (UO)")
107
+
108
+ # Volume Indicators
109
+ with st.expander("Volume Indicators"):
110
+ show_obv = st.checkbox("On-Balance Volume (OBV)")
111
+ show_adl = st.checkbox("Accumulation/Distribution Line (ADL)")
112
+ show_chaikin = st.checkbox("Chaikin Oscillator")
113
+ show_efi = st.checkbox("Elder's Force Index (EFI)")
114
+ show_emv = st.checkbox("Ease of Movement (EMV)")
115
+ show_mfi = st.checkbox("Money Flow Index (MFI)")
116
+ show_vpt = st.checkbox("Volume Price Trend (VPT)")
117
+ show_fve = st.checkbox("Fractal Volume Efficiency (FVE)")
118
+ show_vzo = st.checkbox("Volume Zone Oscillator (VZO)")
119
+
120
+ # Volatility Indicators
121
+ with st.expander("Volatility Indicators"):
122
+ show_bollinger = st.checkbox("Bollinger Bands", value=True)
123
+ show_kc = st.checkbox("Keltner Channels")
124
+ show_dc = st.checkbox("Donchian Channels")
125
+ show_atr = st.checkbox("Average True Range (ATR)")
126
+ show_chandelier = st.checkbox("Chandelier Exit")
127
+ show_psar = st.checkbox("Parabolic SAR")
128
+ show_apz = st.checkbox("Adaptive Price Zone (APZ)")
129
+
130
+ # Oscillators
131
+ with st.expander("Oscillators"):
132
+ show_adx = st.checkbox("Average Directional Index (ADX)")
133
+ show_cci = st.checkbox("Commodity Channel Index (CCI)")
134
+ show_fish = st.checkbox("Fisher Transform")
135
+ show_ao = st.checkbox("Awesome Oscillator (AO)")
136
+ show_mi = st.checkbox("Mass Index (MI)")
137
+ show_wto = st.checkbox("Wave Trend Oscillator (WTO)")
138
+ show_copp = st.checkbox("Coppock Curve")
139
+ show_ift_rsi = st.checkbox("Inverse Fisher Transform RSI")
140
+
141
+ # Complex Indicators
142
+ with st.expander("Complex Indicators"):
143
+ show_ichimoku = st.checkbox("Ichimoku Cloud")
144
+ show_pivot = st.checkbox("Pivot Points")
145
+ show_pivot_fib = st.checkbox("Fibonacci Pivot Points")
146
+ show_basp = st.checkbox("Buyer and Seller Pressure (BASP)")
147
+ show_baspn = st.checkbox("Normalized BASP")
148
+ show_dmi = st.checkbox("Directional Movement Index (DMI)")
149
+ show_ebbp = st.checkbox("Elder Bull/Bear Power")
150
+
151
+ st.divider()
152
+
153
+ # Parameter settings
154
+ st.header("βš™οΈ Parameters")
155
+ sma_period = st.slider("SMA Period", 5, 50, 20)
156
+ ema_period = st.slider("EMA Period", 5, 50, 20)
157
+ rsi_period = st.slider("RSI Period", 5, 30, 14)
158
+ bb_period = st.slider("Bollinger Bands Period", 10, 30, 20)
159
+ bb_std = st.slider("Bollinger Bands Std Dev", 1.0, 3.0, 2.0, 0.1)
160
+
161
+
162
+ col1, col2, col3, col4, col5 = st.columns(5)
163
+ st.divider()
164
+ @st.cache_data
165
+ def fetch_data(symbol, period, interval):
166
+ ticker = yf.Ticker(symbol.upper(), session=session)
167
+ return ticker.history(period=period, interval=interval)
168
+
169
+ # Main content area
170
+ if col3.button("πŸš€ Analyze Stock", type="secondary", use_container_width=True):
171
+
172
+ try:
173
+ # Fetch data
174
+ with st.spinner(f"Fetching data for {symbol.upper()}..."):
175
+
176
+ data = fetch_data(symbol, period, interval)
177
+
178
+ if data.empty:
179
+ st.error("No data found for the given symbol. Please check the symbol and try again.")
180
+ st.stop()
181
+
182
+ # Display basic info
183
+ col1, col2, col3, col4 = st.columns(4)
184
+
185
+ with col1:
186
+ st.metric("Current Price", f"${data['Close'].iloc[-1]:.2f}")
187
+
188
+ with col2:
189
+ price_change = data['Close'].iloc[-1] - data['Close'].iloc[-2]
190
+ st.metric("Price Change", f"${price_change:.2f}", f"{price_change:.2f}")
191
+
192
+ with col3:
193
+ pct_change = (price_change / data['Close'].iloc[-2]) * 100
194
+ st.metric("% Change", f"{pct_change:.2f}%", f"{pct_change:.2f}%")
195
+
196
+ with col4:
197
+ st.metric("Volume", f"{data['Volume'].iloc[-1]:,.0f}")
198
+
199
+ # Calculate indicators
200
+ indicators = {}
201
+
202
+ # Trend Indicators
203
+ if show_sma:
204
+ indicators['SMA'] = SMA(data, sma_period)
205
+ if show_ema:
206
+ indicators['EMA'] = EMA(data, ema_period)
207
+ if show_hma:
208
+ indicators['HMA'] = HMA(data, 20)
209
+ if show_wma:
210
+ indicators['WMA'] = WMA(data, 20)
211
+ if show_kama:
212
+ indicators['KAMA'] = KAMA(data)
213
+ if show_frama:
214
+ indicators['FRAMA'] = FRAMA(data)
215
+ if show_evwma:
216
+ indicators['EVWMA'] = EVWMA(data)
217
+ if show_vwap:
218
+ indicators['VWAP'] = VWAP(data)
219
+
220
+ # Momentum Indicators
221
+ if show_rsi:
222
+ indicators['RSI'] = RSI(data, rsi_period)
223
+ if show_macd:
224
+ indicators['MACD'] = MACD(data)
225
+ if show_stochrsi:
226
+ indicators['StochRSI'] = STOCHRSI(data)
227
+ if show_cmo:
228
+ indicators['CMO'] = CMO(data)
229
+ if show_roc:
230
+ indicators['ROC'] = ROC(data)
231
+ if show_tsi:
232
+ indicators['TSI'] = TSI(data)
233
+ if show_kst:
234
+ indicators['KST'] = KST(data)
235
+ if show_ppo:
236
+ indicators['PPO'] = PPO(data)
237
+ if show_uo:
238
+ indicators['UO'] = UO(data)
239
+
240
+ # Volume Indicators
241
+ if show_obv:
242
+ indicators['OBV'] = OBV(data)
243
+ if show_adl:
244
+ indicators['ADL'] = ADL(data)
245
+ if show_chaikin:
246
+ indicators['Chaikin'] = CHAIKIN(data)
247
+ if show_efi:
248
+ indicators['EFI'] = EFI(data)
249
+ if show_emv:
250
+ indicators['EMV'] = EMV(data)
251
+ if show_mfi:
252
+ indicators['MFI'] = MFI(data)
253
+ if show_vpt:
254
+ indicators['VPT'] = VPT(data)
255
+ if show_fve:
256
+ indicators['FVE'] = FVE(data)
257
+ if show_vzo:
258
+ indicators['VZO'] = VZO(data)
259
+
260
+ # Volatility Indicators
261
+ if show_bollinger:
262
+ indicators['Bollinger'] = BOLLINGER(data, bb_period, bb_std)
263
+ if show_kc:
264
+ indicators['KC'] = KC(data)
265
+ if show_dc:
266
+ indicators['DC'] = DC(data)
267
+ if show_atr:
268
+ indicators['ATR'] = ATR(data)
269
+ if show_chandelier:
270
+ indicators['Chandelier'] = CHANDELIER(data)
271
+ if show_psar:
272
+ indicators['PSAR'] = PSAR(data)
273
+ if show_apz:
274
+ indicators['APZ'] = APZ(data)
275
+
276
+ # Oscillators
277
+ if show_adx:
278
+ indicators['ADX'] = ADX(data)
279
+ if show_cci:
280
+ indicators['CCI'] = CCI(data)
281
+ if show_fish:
282
+ indicators['Fisher'] = FISH(data)
283
+ if show_ao:
284
+ indicators['AO'] = AO(data)
285
+ if show_mi:
286
+ indicators['MI'] = MI(data)
287
+ if show_wto:
288
+ indicators['WTO'] = WTO(data)
289
+ if show_copp:
290
+ indicators['Coppock'] = COPP(data)
291
+ if show_ift_rsi:
292
+ indicators['IFT_RSI'] = IFT_RSI(data)
293
+
294
+ # Complex Indicators
295
+ if show_ichimoku:
296
+ indicators['Ichimoku'] = ICHIMOKU(data)
297
+ if show_pivot:
298
+ indicators['Pivot'] = PIVOT(data)
299
+ if show_pivot_fib:
300
+ indicators['Pivot_Fib'] = PIVOT_FIB(data)
301
+ if show_basp:
302
+ indicators['BASP'] = BASP(data)
303
+ if show_baspn:
304
+ indicators['BASPN'] = BASPN(data)
305
+ if show_dmi:
306
+ indicators['DMI'] = DMI(data)
307
+ if show_ebbp:
308
+ indicators['EBBP'] = EBBP(data)
309
+
310
+ # Create main price chart
311
+ fig = make_subplots(
312
+ rows=4, cols=1,
313
+ shared_xaxes=True,
314
+ vertical_spacing=0.05,
315
+ subplot_titles=('Price Chart', 'Volume', 'Oscillators', 'Additional Indicators'),
316
+ row_heights=[0.5, 0.2, 0.15, 0.15]
317
+ )
318
+
319
+ # Add candlestick chart
320
+ fig.add_trace(
321
+ go.Candlestick(
322
+ x=data.index,
323
+ open=data['Open'],
324
+ high=data['High'],
325
+ low=data['Low'],
326
+ close=data['Close'],
327
+ name='Price'
328
+ ),
329
+ row=1, col=1
330
+ )
331
+
332
+ # Define colors for trend indicators to avoid repetition
333
+ colors = ["red", "yellow", "green", "purple", "orange", "brown", "pink", "gray", "cyan", "magenta"]
334
+ color_idx = 0
335
+
336
+ # Add trend indicators to price chart (row 1)
337
+ trend_indicators = ['SMA', 'EMA', 'HMA', 'WMA', 'KAMA', 'FRAMA', 'EVWMA', 'VWAP']
338
+ for name in trend_indicators:
339
+ if name in indicators:
340
+ fig.add_trace(
341
+ go.Scatter(
342
+ x=data.index,
343
+ y=indicators[name].fillna(method='ffill'), # Handle NaNs
344
+ mode='lines',
345
+ name=name,
346
+ line=dict(color=colors[color_idx % len(colors)])
347
+ ),
348
+ row=1, col=1
349
+ )
350
+ color_idx += 1
351
+
352
+ # Add volatility indicators to price chart (row 1)
353
+ if 'Bollinger' in indicators:
354
+ bb = indicators['Bollinger']
355
+ fig.add_trace(
356
+ go.Scatter(
357
+ x=data.index,
358
+ y=bb['BB_UPPER'].fillna(method='ffill'),
359
+ mode='lines',
360
+ name='BB Upper',
361
+ line=dict(color='lightblue', dash='dash')
362
+ ),
363
+ row=1, col=1
364
+ )
365
+ fig.add_trace(
366
+ go.Scatter(
367
+ x=data.index,
368
+ y=bb['BB_LOWER'].fillna(method='ffill'),
369
+ mode='lines',
370
+ name='BB Lower',
371
+ line=dict(color='lightblue', dash='dash'),
372
+ fill='tonexty',
373
+ fillcolor='rgba(173, 216, 230, 0.2)'
374
+ ),
375
+ row=1, col=1
376
+ )
377
+
378
+ if 'KC' in indicators:
379
+ kc = indicators['KC']
380
+ fig.add_trace(
381
+ go.Scatter(x=data.index, y=kc['KC_UPPER'].fillna(method='ffill'), name='KC Upper', line=dict(color='orange')),
382
+ row=1, col=1
383
+ )
384
+ fig.add_trace(
385
+ go.Scatter(x=data.index, y=kc['KC_LOWER'].fillna(method='ffill'), name='KC Lower', line=dict(color='orange')),
386
+ row=1, col=1
387
+ )
388
+ fig.add_trace(
389
+ go.Scatter(x=data.index, y=kc['KC_MIDDLE'].fillna(method='ffill'), name='KC Middle', line=dict(color='gray', dash='dot')),
390
+ row=1, col=1
391
+ )
392
+
393
+ if 'DC' in indicators:
394
+ dc = indicators['DC']
395
+ fig.add_trace(
396
+ go.Scatter(x=data.index, y=dc['DC_U'].fillna(method='ffill'), name='DC Upper', line=dict(color='green')),
397
+ row=1, col=1
398
+ )
399
+ fig.add_trace(
400
+ go.Scatter(x=data.index, y=dc['DC_L'].fillna(method='ffill'), name='DC Lower', line=dict(color='green')),
401
+ row=1, col=1
402
+ )
403
+ fig.add_trace(
404
+ go.Scatter(x=data.index, y=dc['DC_M'].fillna(method='ffill'), name='DC Middle', line=dict(color='limegreen', dash='dot')),
405
+ row=1, col=1
406
+ )
407
+
408
+ if 'Chandelier' in indicators:
409
+ ce = indicators['Chandelier']
410
+ fig.add_trace(
411
+ go.Scatter(x=data.index, y=ce['CHANDELIER_Long'].fillna(method='ffill'), name='Chandelier Long', line=dict(color='darkred')),
412
+ row=1, col=1
413
+ )
414
+ fig.add_trace(
415
+ go.Scatter(x=data.index, y=ce['CHANDELIER_Short'].fillna(method='ffill'), name='Chandelier Short', line=dict(color='darkgreen')),
416
+ row=1, col=1
417
+ )
418
+
419
+ if 'APZ' in indicators:
420
+ apz = indicators['APZ']
421
+ fig.add_trace(
422
+ go.Scatter(x=data.index, y=apz['APZ_UPPER'].fillna(method='ffill'), name='APZ Upper', line=dict(color='orange', dash='dot')),
423
+ row=1, col=1
424
+ )
425
+ fig.add_trace(
426
+ go.Scatter(x=data.index, y=apz['APZ_LOWER'].fillna(method='ffill'), name='APZ Lower', line=dict(color='coral', dash='dot')),
427
+ row=1, col=1
428
+ )
429
+
430
+ if 'Ichimoku' in indicators:
431
+ ichimoku = indicators['Ichimoku']
432
+ fig.add_trace(
433
+ go.Scatter(x=data.index, y=ichimoku['TENKAN'].fillna(method='ffill'), name='Tenkan-sen', line=dict(color='blue')),
434
+ row=1, col=1
435
+ )
436
+ fig.add_trace(
437
+ go.Scatter(x=data.index, y=ichimoku['KIJUN'].fillna(method='ffill'), name='Kijun-sen', line=dict(color='red')),
438
+ row=1, col=1
439
+ )
440
+ fig.add_trace(
441
+ go.Scatter(x=data.index, y=ichimoku['SENKOU_A'].fillna(method='ffill'), name='Senkou A', line=dict(color='green')),
442
+ row=1, col=1
443
+ )
444
+ fig.add_trace(
445
+ go.Scatter(x=data.index, y=ichimoku['SENKOU_B'].fillna(method='ffill'), name='Senkou B', line=dict(color='red'), fill='tonexty', fillcolor='rgba(0, 255, 0, 0.2)'),
446
+ row=1, col=1
447
+ )
448
+ fig.add_trace(
449
+ go.Scatter(x=data.index, y=ichimoku['CHIKOU'].fillna(method='ffill'), name='Chikou Span', line=dict(color='purple')),
450
+ row=1, col=1
451
+ )
452
+
453
+ if 'Pivot' in indicators:
454
+ pivot = indicators['Pivot']
455
+ for col in ['pivot', 'r1', 'r2', 'r3', 's1', 's2', 's3']:
456
+ fig.add_trace(
457
+ go.Scatter(x=data.index, y=pivot[col].fillna(method='ffill'), name=f'Pivot {col.upper()}', line=dict(dash='dash')),
458
+ row=1, col=1
459
+ )
460
+
461
+ if 'Pivot_Fib' in indicators:
462
+ pivot_fib = indicators['Pivot_Fib']
463
+ for col in ['pivot', 'r1', 'r2', 'r3', 's1', 's2', 's3']:
464
+ fig.add_trace(
465
+ go.Scatter(x=data.index, y=pivot_fib[col].fillna(method='ffill'), name=f'Fib Pivot {col.upper()}', line=dict(dash='dot')),
466
+ row=1, col=1
467
+ )
468
+
469
+ if 'PSAR' in indicators:
470
+ psar = indicators['PSAR']
471
+ fig.add_trace(
472
+ go.Scatter(x=data.index, y=psar['psar'].fillna(method='ffill'), name='PSAR', mode='markers', marker=dict(size=5, color='blue')),
473
+ row=1, col=1
474
+ )
475
+ fig.add_trace(
476
+ go.Scatter(x=data.index, y=psar['psarbull'].fillna(method='ffill'), name='PSAR Bull', mode='markers', marker=dict(size=5, color='green')),
477
+ row=1, col=1
478
+ )
479
+ fig.add_trace(
480
+ go.Scatter(x=data.index, y=psar['psarbear'].fillna(method='ffill'), name='PSAR Bear', mode='markers', marker=dict(size=5, color='red')),
481
+ row=1, col=1
482
+ )
483
+
484
+ # Add volume (row 2)
485
+ fig.add_trace(
486
+ go.Bar(
487
+ x=data.index,
488
+ y=data['Volume'],
489
+ name='Volume',
490
+ marker_color='lightblue'
491
+ ),
492
+ row=2, col=1
493
+ )
494
+
495
+ # Add oscillators to row 3
496
+ if 'RSI' in indicators:
497
+ fig.add_trace(
498
+ go.Scatter(x=data.index, y=indicators['RSI'].fillna(method='ffill'), mode='lines', name='RSI', line=dict(color='purple')),
499
+ row=3, col=1
500
+ )
501
+ fig.add_hline(y=70, line_dash="dash", line_color="red", row=3, col=1)
502
+ fig.add_hline(y=30, line_dash="dash", line_color="green", row=3, col=1)
503
+
504
+ if 'StochRSI' in indicators:
505
+ fig.add_trace(
506
+ go.Scatter(x=data.index, y=indicators['StochRSI'].fillna(method='ffill'), mode='lines', name='StochRSI', line=dict(color='orange')),
507
+ row=3, col=1
508
+ )
509
+ fig.add_hline(y=80, line_dash="dash", line_color="red", row=3, col=1)
510
+ fig.add_hline(y=20, line_dash="dash", line_color="green", row=3, col=1)
511
+
512
+ if 'CCI' in indicators:
513
+ fig.add_trace(
514
+ go.Scatter(x=data.index, y=indicators['CCI'].fillna(method='ffill'), mode='lines', name='CCI', line=dict(color='blue')),
515
+ row=3, col=1
516
+ )
517
+ fig.add_hline(y=100, line_dash="dash", line_color="red", row=3, col=1)
518
+ fig.add_hline(y=-100, line_dash="dash", line_color="green", row=3, col=1)
519
+
520
+ if 'ADX' in indicators:
521
+ fig.add_trace(
522
+ go.Scatter(x=data.index, y=indicators['ADX'].fillna(method='ffill'), mode='lines', name='ADX', line=dict(color='cyan')),
523
+ row=3, col=1
524
+ )
525
+ fig.add_hline(y=25, line_dash="dash", line_color="gray", row=3, col=1)
526
+
527
+ if 'Fisher' in indicators:
528
+ fig.add_trace(
529
+ go.Scatter(x=data.index, y=indicators['Fisher'].fillna(method='ffill'), mode='lines', name='Fisher Transform', line=dict(color='magenta')),
530
+ row=3, col=1
531
+ )
532
+
533
+ if 'AO' in indicators:
534
+ fig.add_trace(
535
+ go.Scatter(x=data.index, y=indicators['AO'].fillna(method='ffill'), mode='lines', name='Awesome Oscillator', line=dict(color='green')),
536
+ row=3, col=1
537
+ )
538
+ fig.add_hline(y=0, line_dash="dash", line_color="gray", row=3, col=1)
539
+
540
+ if 'MI' in indicators:
541
+ fig.add_trace(
542
+ go.Scatter(x=data.index, y=indicators['MI'].fillna(method='ffill'), mode='lines', name='Mass Index', line=dict(color='purple')),
543
+ row=3, col=1
544
+ )
545
+ fig.add_hline(y=27, line_dash="dash", line_color="red", row=3, col=1)
546
+
547
+ if 'IFT_RSI' in indicators:
548
+ fig.add_trace(
549
+ go.Scatter(x=data.index, y=indicators['IFT_RSI'].fillna(method='ffill'), mode='lines', name='IFT RSI', line=dict(color='orange')),
550
+ row=3, col=1
551
+ )
552
+
553
+ # Add momentum and volume indicators to row 4
554
+ if 'MACD' in indicators:
555
+ macd = indicators['MACD']
556
+ macd_line = macd['MACD']
557
+ signal_line = macd['SIGNAL']
558
+ macd_histogram = macd_line - signal_line
559
+ fig.add_trace(
560
+ go.Scatter(x=data.index, y=macd_line.fillna(method='ffill'), mode='lines', name='MACD', line=dict(color='#04c6fc')),
561
+ row=4, col=1
562
+ )
563
+ fig.add_trace(
564
+ go.Scatter(x=data.index, y=signal_line.fillna(method='ffill'), mode='lines', name='MACD Signal', line=dict(color='blue', dash='dash')),
565
+ row=4, col=1
566
+ )
567
+ fig.add_trace(
568
+ go.Bar(x=data.index, y=macd_histogram.fillna(0), name='MACD Histogram', marker_color=['green' if val >= 0 else 'red' for val in macd_histogram]),
569
+ row=4, col=1
570
+ )
571
+
572
+ if 'TSI' in indicators:
573
+ tsi = indicators['TSI']
574
+ fig.add_trace(
575
+ go.Scatter(x=data.index, y=tsi['TSI'].fillna(method='ffill'), name='TSI', line=dict(color='blue')),
576
+ row=4, col=1
577
+ )
578
+ fig.add_trace(
579
+ go.Scatter(x=data.index, y=tsi['signal'].fillna(method='ffill'), name='TSI Signal', line=dict(color='blue', dash='dash')),
580
+ row=4, col=1
581
+ )
582
+
583
+ if 'KST' in indicators:
584
+ kst = indicators['KST']
585
+ fig.add_trace(
586
+ go.Scatter(x=data.index, y=kst['KST'].fillna(method='ffill'), name='KST', line=dict(color='purple')),
587
+ row=4, col=1
588
+ )
589
+ fig.add_trace(
590
+ go.Scatter(x=data.index, y=kst['signal'].fillna(method='ffill'), name='KST Signal', line=dict(color='purple', dash='dot')),
591
+ row=4, col=1
592
+ )
593
+
594
+ if 'PPO' in indicators:
595
+ ppo = indicators['PPO']
596
+ fig.add_trace(
597
+ go.Scatter(x=data.index, y=ppo['PPO'].fillna(method='ffill'), name='PPO', line=dict(color='cyan')),
598
+ row=4, col=1
599
+ )
600
+ fig.add_trace(
601
+ go.Scatter(x=data.index, y=ppo['PPO_signal'].fillna(method='ffill'), name='PPO Signal', line=dict(color='cyan', dash='dash')),
602
+ row=4, col=1
603
+ )
604
+ fig.add_trace(
605
+ go.Bar(x=data.index, y=ppo['PPO_histo'].fillna(0), name='PPO Histogram', marker_color=['green' if val >= 0 else 'red' for val in ppo['PPO_histo']]),
606
+ row=4, col=1
607
+ )
608
+
609
+ if 'CMO' in indicators:
610
+ fig.add_trace(
611
+ go.Scatter(x=data.index, y=indicators['CMO'].fillna(method='ffill'), name='CMO', line=dict(color='orange')),
612
+ row=4, col=1
613
+ )
614
+ fig.add_hline(y=50, line_dash="dash", line_color="red", row=4, col=1)
615
+ fig.add_hline(y=-50, line_dash="dash", line_color="green", row=4, col=1)
616
+
617
+ if 'ROC' in indicators:
618
+ fig.add_trace(
619
+ go.Scatter(x=data.index, y=indicators['ROC'].fillna(method='ffill'), name='ROC', line=dict(color='green')),
620
+ row=4, col=1
621
+ )
622
+ fig.add_hline(y=0, line_dash="dash", line_color="gray", row=4, col=1)
623
+
624
+ if 'UO' in indicators:
625
+ fig.add_trace(
626
+ go.Scatter(x=data.index, y=indicators['UO'].fillna(method='ffill'), name='Ultimate Oscillator', line=dict(color='purple')),
627
+ row=4, col=1
628
+ )
629
+ fig.add_hline(y=70, line_dash="dash", line_color="red", row=4, col=1)
630
+ fig.add_hline(y=30, line_dash="dash", line_color="green", row=4, col=1)
631
+
632
+ if 'OBV' in indicators:
633
+ fig.add_trace(
634
+ go.Scatter(x=data.index, y=indicators['OBV'].fillna(method='ffill'), name='OBV', line=dict(color='blue')),
635
+ row=4, col=1
636
+ )
637
+
638
+ if 'ADL' in indicators:
639
+ fig.add_trace(
640
+ go.Scatter(x=data.index, y=indicators['ADL'].fillna(method='ffill'), name='ADL', line=dict(color='cyan')),
641
+ row=4, col=1
642
+ )
643
+
644
+ if 'EFI' in indicators:
645
+ fig.add_trace(
646
+ go.Scatter(x=data.index, y=indicators['EFI'].fillna(method='ffill'), name='EFI', line=dict(color='magenta')),
647
+ row=4, col=1
648
+ )
649
+
650
+ if 'EMV' in indicators:
651
+ fig.add_trace(
652
+ go.Scatter(x=data.index, y=indicators['EMV'].fillna(method='ffill'), name='EMV', line=dict(color='orange')),
653
+ row=4, col=1
654
+ )
655
+
656
+ if 'MFI' in indicators:
657
+ fig.add_trace(
658
+ go.Scatter(x=data.index, y=indicators['MFI'].fillna(method='ffill'), name='MFI', line=dict(color='blue')),
659
+ row=4, col=1
660
+ )
661
+ fig.add_hline(y=80, line_dash="dash", line_color="red", row=4, col=1)
662
+ fig.add_hline(y=20, line_dash="dash", line_color="green", row=4, col=1)
663
+
664
+ if 'VPT' in indicators:
665
+ fig.add_trace(
666
+ go.Scatter(x=data.index, y=indicators['VPT'].fillna(method='ffill'), name='VPT', line=dict(color='blue', dash='dot')),
667
+ row=4, col=1
668
+ )
669
+
670
+ if 'FVE' in indicators:
671
+ fig.add_trace(
672
+ go.Scatter(x=data.index, y=indicators['FVE'].fillna(method='ffill'), name='FVE', line=dict(color='blue', dash='dot')),
673
+ row=4, col=1
674
+ )
675
+
676
+ if 'VZO' in indicators:
677
+ fig.add_trace(
678
+ go.Scatter(x=data.index, y=indicators['VZO'].fillna(method='ffill'), name='VZO', line=dict(color='blue', dash='dot')),
679
+ row=4, col=1
680
+ )
681
+ fig.add_hline(y=40, line_dash="dash", line_color="green", row=4, col=1)
682
+ fig.add_hline(y=5, line_dash="dash", line_color="red", row=4, col=1)
683
+ fig.add_hline(y=-5, line_dash="dash", line_color="red", row=4, col=1)
684
+ fig.add_hline(y=-40, line_dash="dash", line_color="green", row=4, col=1)
685
+
686
+ if 'WTO' in indicators:
687
+ wto = indicators['WTO']
688
+ fig.add_trace(
689
+ go.Scatter(x=data.index, y=wto['WT1'].fillna(method='ffill'), name='WTO WT1', line=dict(color='cyan')),
690
+ row=4, col=1
691
+ )
692
+ fig.add_trace(
693
+ go.Scatter(x=data.index, y=wto['WT2'].fillna(method='ffill'), name='WTO WT2', line=dict(color='cyan', dash='dash')),
694
+ row=4, col=1
695
+ )
696
+
697
+ if 'Coppock' in indicators:
698
+ fig.add_trace(
699
+ go.Scatter(x=data.index, y=indicators['Coppock'].fillna(method='ffill'), name='Coppock Curve', line=dict(color='purple')),
700
+ row=4, col=1
701
+ )
702
+ fig.add_hline(y=0, line_dash="dash", line_color="gray", row=4, col=1)
703
+
704
+ if 'BASP' in indicators:
705
+ basp = indicators['BASP']
706
+ fig.add_trace(
707
+ go.Scatter(x=data.index, y=basp['Buy'].fillna(method='ffill'), name='BASP Buy', line=dict(color='green')),
708
+ row=4, col=1
709
+ )
710
+ fig.add_trace(
711
+ go.Scatter(x=data.index, y=basp['Sell'].fillna(method='ffill'), name='BASP Sell', line=dict(color='red')),
712
+ row=4, col=1
713
+ )
714
+
715
+ if 'BASPN' in indicators:
716
+ baspn = indicators['BASPN']
717
+ fig.add_trace(
718
+ go.Scatter(x=data.index, y=baspn['BASPN_Buy'].fillna(method='ffill'), name='BASPN Buy', line=dict(color='limegreen')),
719
+ row=4, col=1
720
+ )
721
+ fig.add_trace(
722
+ go.Scatter(x=data.index, y=baspn['BASPN_Sell'].fillna(method='ffill'), name='BASPN Sell', line=dict(color='coral')),
723
+ row=4, col=1
724
+ )
725
+
726
+ if 'DMI' in indicators:
727
+ dmi = indicators['DMI']
728
+ fig.add_trace(
729
+ go.Scatter(x=data.index, y=dmi['+DI'].fillna(method='ffill'), name='+DI', line=dict(color='blue')),
730
+ row=4, col=1
731
+ )
732
+ fig.add_trace(
733
+ go.Scatter(x=data.index, y=dmi['-DI'].fillna(method='ffill'), name='-DI', line=dict(color='red')),
734
+ row=4, col=1
735
+ )
736
+
737
+ if 'EBBP' in indicators:
738
+ ebbp = indicators['EBBP']
739
+ fig.add_trace(
740
+ go.Scatter(x=data.index, y=ebbp['Bull'].fillna(method='ffill'), name='Bull Power', line=dict(color='green')),
741
+ row=4, col=1
742
+ )
743
+ fig.add_trace(
744
+ go.Scatter(x=data.index, y=ebbp['Bear'].fillna(method='ffill'), name='Bear Power', line=dict(color='red')),
745
+ row=4, col=1
746
+ )
747
+
748
+ if 'ATR' in indicators:
749
+ fig.add_trace(
750
+ go.Scatter(x=data.index, y=indicators['ATR'].fillna(method='ffill'), name='ATR', line=dict(color='blue')),
751
+ row=4, col=1
752
+ )
753
+
754
+ # Update layout
755
+ fig.update_layout(
756
+ title=f'{symbol.upper()} - Technical Analysis',
757
+ xaxis_rangeslider_visible=False,
758
+ height=800,
759
+ showlegend=True
760
+ )
761
+
762
+ st.plotly_chart(fig, use_container_width=True)
763
+
764
+ # Display indicator values in tabs
765
+ st.subheader("πŸ“Š Indicator Values")
766
+
767
+ # Create tabs for different categories
768
+ tab1, tab2, tab3, tab4, tab5 = st.tabs(["Trend", "Momentum", "Volume", "Volatility", "Oscillators"])
769
+
770
+ with tab1:
771
+ st.markdown("### Trend Indicators")
772
+ trend_cols = st.columns(3)
773
+ col_idx = 0
774
+
775
+ for name, indicator in indicators.items():
776
+ if name in ['SMA', 'EMA', 'HMA', 'WMA', 'KAMA', 'FRAMA', 'EVWMA', 'VWAP']:
777
+ with trend_cols[col_idx % 3]:
778
+ if isinstance(indicator, pd.Series):
779
+ st.metric(name, f"{indicator.iloc[-1]:.2f}")
780
+ col_idx += 1
781
+
782
+ with tab2:
783
+ st.markdown("### Momentum Indicators")
784
+ momentum_cols = st.columns(3)
785
+ col_idx = 0
786
+
787
+ for name, indicator in indicators.items():
788
+ if name in ['RSI', 'StochRSI', 'CMO', 'ROC', 'UO']:
789
+ with momentum_cols[col_idx % 3]:
790
+ if isinstance(indicator, pd.Series):
791
+ st.metric(name, f"{indicator.iloc[-1]:.2f}")
792
+ col_idx += 1
793
+
794
+ with tab3:
795
+ st.markdown("### Volume Indicators")
796
+ volume_cols = st.columns(3)
797
+ col_idx = 0
798
+
799
+ for name, indicator in indicators.items():
800
+ if name in ['OBV', 'ADL', 'EFI', 'EMV', 'MFI', 'VPT', 'FVE', 'VZO']:
801
+ with volume_cols[col_idx % 3]:
802
+ if isinstance(indicator, pd.Series):
803
+ st.metric(name, f"{indicator.iloc[-1]:.2f}")
804
+ col_idx += 1
805
+
806
+ with tab4:
807
+ st.markdown("### Volatility Indicators")
808
+ volatility_cols = st.columns(3)
809
+ col_idx = 0
810
+
811
+ for name, indicator in indicators.items():
812
+ if name in ['ATR', 'PSAR']:
813
+ with volatility_cols[col_idx % 3]:
814
+ if isinstance(indicator, pd.Series):
815
+ st.metric(name, f"{indicator.iloc[-1]:.2f}")
816
+ col_idx += 1
817
+
818
+ with tab5:
819
+ st.markdown("### Oscillators")
820
+ osc_cols = st.columns(3)
821
+ col_idx = 0
822
+
823
+ for name, indicator in indicators.items():
824
+ if name in ['ADX', 'CCI', 'Fisher', 'AO', 'MI']:
825
+ with osc_cols[col_idx % 3]:
826
+ if isinstance(indicator, pd.Series):
827
+ st.metric(name, f"{indicator.iloc[-1]:.2f}")
828
+ col_idx += 1
829
+
830
+ # Raw data section
831
+ with st.expander("πŸ“‹ Raw Data"):
832
+ st.dataframe(data.tail(50))
833
+
834
+ # Download section
835
+ st.subheader("πŸ’Ύ Download Data")
836
+
837
+ # Combine all indicators into one DataFrame
838
+ combined_df = data.copy()
839
+ for name, indicator in indicators.items():
840
+ if isinstance(indicator, pd.Series):
841
+ combined_df[name] = indicator
842
+ elif isinstance(indicator, pd.DataFrame):
843
+ for col in indicator.columns:
844
+ combined_df[f"{name}_{col}"] = indicator[col]
845
+
846
+ csv = combined_df.to_csv()
847
+ st.download_button(
848
+ label="Download CSV",
849
+ data=csv,
850
+ file_name=f'{symbol}_technical_analysis.csv',
851
+ mime='text/csv'
852
+ )
853
+
854
+ except Exception as e:
855
+ st.error(f"An error occurred: {str(e)}")
856
+ st.error("Please check your internet connection and try again.")
857
+
858
+ # Instructions
859
+ else:
860
+ st.markdown("""
861
+ ## πŸš€ How to Use This Dashboard
862
+
863
+ 1. **Enter a stock symbol** in the sidebar (e.g., AAPL, GOOGL, MSFT) for Indian Stocks, use NSE symbols like RELIANCE.NS
864
+ or BHEL.NS.
865
+ 2. **Select time period and interval** for the data
866
+ 3. **Choose technical indicators** you want to analyze
867
+ 4. **Adjust parameters** for the indicators
868
+ 5. **Click "Analyze Stock"** to generate the analysis
869
+
870
+ ### πŸ“ˆ Available Indicators
871
+
872
+ This dashboard includes **40+ technical indicators** across multiple categories:
873
+
874
+ - **Trend Indicators**: SMA, EMA, HMA, WMA, KAMA, FRAMA, EVWMA, VWAP
875
+ - **Momentum Indicators**: RSI, MACD, Stochastic RSI, CMO, ROC, TSI, KST, PPO, UO
876
+ - **Volume Indicators**: OBV, ADL, Chaikin Oscillator, EFI, EMV, MFI, VPT, FVE, VZO
877
+ - **Volatility Indicators**: Bollinger Bands, Keltner Channels, Donchian Channels, ATR, Chandelier Exit, Parabolic SAR
878
+ - **Oscillators**: ADX, CCI, Fisher Transform, Awesome Oscillator, Mass Index, Wave Trend Oscillator
879
+ - **Complex Indicators**: Ichimoku Cloud, Pivot Points, Fibonacci Pivots, BASP, DMI, Elder Bull/Bear Power
880
+
881
+ ### πŸ’‘ Tips
882
+
883
+ - Use multiple indicators together for better analysis
884
+ - Adjust parameters based on your trading timeframe
885
+ - Download the data for further analysis
886
+ - Check different time periods to understand trends
887
+ """)
888
+
889
+ # Footer
890
+ st.markdown("---")
891
+ st.markdown("**Technical Analysis Dashboard** | Built with Streamlit & Python | Data from Yahoo Finance")
892
+ st.markdown("---")
893
+ st.markdown("**Made By Zane Vijay Falcao**")