Create app.py
Browse files
app.py
ADDED
@@ -0,0 +1,893 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import streamlit as st
|
2 |
+
import pandas as pd
|
3 |
+
import numpy as np
|
4 |
+
import yfinance as yf
|
5 |
+
import plotly.graph_objects as go
|
6 |
+
from plotly.subplots import make_subplots
|
7 |
+
import warnings
|
8 |
+
warnings.filterwarnings('ignore')
|
9 |
+
from curl_cffi import requests
|
10 |
+
session = requests.Session(impersonate="chrome")
|
11 |
+
|
12 |
+
# Import all technical indicators from your file
|
13 |
+
from technical_indicators import *
|
14 |
+
|
15 |
+
# Page configuration
|
16 |
+
st.set_page_config(
|
17 |
+
page_title="Technical Analysis Dashboard",
|
18 |
+
page_icon="π",
|
19 |
+
layout="wide",
|
20 |
+
initial_sidebar_state="expanded"
|
21 |
+
)
|
22 |
+
|
23 |
+
# Custom CSS for better styling
|
24 |
+
st.markdown("""
|
25 |
+
<style>
|
26 |
+
.main-header {
|
27 |
+
font-size: 2.5rem;
|
28 |
+
font-weight: bold;
|
29 |
+
color: #1f77b4;
|
30 |
+
text-align: center;
|
31 |
+
margin-bottom: 2rem;
|
32 |
+
}
|
33 |
+
.sub-header {
|
34 |
+
font-size: 1.5rem;
|
35 |
+
font-weight: bold;
|
36 |
+
text-align: center;
|
37 |
+
margin-bottom: 1rem;
|
38 |
+
}
|
39 |
+
.metric-container {
|
40 |
+
background-color: #f0f2f6;
|
41 |
+
padding: 1rem;
|
42 |
+
border-radius: 0.5rem;
|
43 |
+
margin: 0.5rem 0;
|
44 |
+
}
|
45 |
+
.indicator-section {
|
46 |
+
background-color: #ffffff;
|
47 |
+
padding: 1.5rem;
|
48 |
+
border-radius: 0.5rem;
|
49 |
+
margin: 1rem 0;
|
50 |
+
border: 1px solid #e0e0e0;
|
51 |
+
}
|
52 |
+
</style>
|
53 |
+
""", unsafe_allow_html=True)
|
54 |
+
|
55 |
+
# Title
|
56 |
+
st.markdown('<h1 class="main-header">π Technical Analysis Dashboard</h1>', unsafe_allow_html=True)
|
57 |
+
st.markdown('<h3 class="sub-header">Developed By Zane Vijay Falcao</h3>', unsafe_allow_html=True)
|
58 |
+
st.divider()
|
59 |
+
# Sidebar for inputs
|
60 |
+
with st.sidebar:
|
61 |
+
st.header("π Configuration")
|
62 |
+
|
63 |
+
# Stock symbol input
|
64 |
+
symbol = st.text_input("Stock Symbol", value="AAPL", help="Enter stock symbol (e.g., AAPL, GOOGL, MSFT)")
|
65 |
+
|
66 |
+
# Time period selection
|
67 |
+
period = st.selectbox(
|
68 |
+
"Time Period",
|
69 |
+
["1mo", "3mo", "6mo", "1y", "2y", "5y", "max"],
|
70 |
+
index=3
|
71 |
+
)
|
72 |
+
|
73 |
+
# Interval selection
|
74 |
+
interval = st.selectbox(
|
75 |
+
"Data Interval",
|
76 |
+
["1d", "5d", "1wk", "1mo"],
|
77 |
+
index=0
|
78 |
+
)
|
79 |
+
|
80 |
+
st.divider()
|
81 |
+
|
82 |
+
# Indicator Categories
|
83 |
+
st.header("π Select Indicators")
|
84 |
+
|
85 |
+
# Trend Indicators
|
86 |
+
with st.expander("Trend Indicators", expanded=True):
|
87 |
+
show_sma = st.checkbox("Simple Moving Average (SMA)", value=True)
|
88 |
+
show_ema = st.checkbox("Exponential Moving Average (EMA)", value=True)
|
89 |
+
show_hma = st.checkbox("Hull Moving Average (HMA)")
|
90 |
+
show_wma = st.checkbox("Weighted Moving Average (WMA)")
|
91 |
+
show_kama = st.checkbox("Kaufman Adaptive Moving Average (KAMA)")
|
92 |
+
show_frama = st.checkbox("Fractal Adaptive Moving Average (FRAMA)")
|
93 |
+
show_evwma = st.checkbox("Ehlers Volatility Weighted MA (EVWMA)")
|
94 |
+
show_vwap = st.checkbox("Volume Weighted Average Price (VWAP)")
|
95 |
+
|
96 |
+
# Momentum Indicators
|
97 |
+
with st.expander("Momentum Indicators", expanded=True):
|
98 |
+
show_rsi = st.checkbox("Relative Strength Index (RSI)", value=True)
|
99 |
+
show_macd = st.checkbox("MACD", value=True)
|
100 |
+
show_stochrsi = st.checkbox("Stochastic RSI")
|
101 |
+
show_cmo = st.checkbox("Chande Momentum Oscillator (CMO)")
|
102 |
+
show_roc = st.checkbox("Rate of Change (ROC)")
|
103 |
+
show_tsi = st.checkbox("True Strength Index (TSI)")
|
104 |
+
show_kst = st.checkbox("Know Sure Thing (KST)")
|
105 |
+
show_ppo = st.checkbox("Price Percentage Oscillator (PPO)")
|
106 |
+
show_uo = st.checkbox("Ultimate Oscillator (UO)")
|
107 |
+
|
108 |
+
# Volume Indicators
|
109 |
+
with st.expander("Volume Indicators"):
|
110 |
+
show_obv = st.checkbox("On-Balance Volume (OBV)")
|
111 |
+
show_adl = st.checkbox("Accumulation/Distribution Line (ADL)")
|
112 |
+
show_chaikin = st.checkbox("Chaikin Oscillator")
|
113 |
+
show_efi = st.checkbox("Elder's Force Index (EFI)")
|
114 |
+
show_emv = st.checkbox("Ease of Movement (EMV)")
|
115 |
+
show_mfi = st.checkbox("Money Flow Index (MFI)")
|
116 |
+
show_vpt = st.checkbox("Volume Price Trend (VPT)")
|
117 |
+
show_fve = st.checkbox("Fractal Volume Efficiency (FVE)")
|
118 |
+
show_vzo = st.checkbox("Volume Zone Oscillator (VZO)")
|
119 |
+
|
120 |
+
# Volatility Indicators
|
121 |
+
with st.expander("Volatility Indicators"):
|
122 |
+
show_bollinger = st.checkbox("Bollinger Bands", value=True)
|
123 |
+
show_kc = st.checkbox("Keltner Channels")
|
124 |
+
show_dc = st.checkbox("Donchian Channels")
|
125 |
+
show_atr = st.checkbox("Average True Range (ATR)")
|
126 |
+
show_chandelier = st.checkbox("Chandelier Exit")
|
127 |
+
show_psar = st.checkbox("Parabolic SAR")
|
128 |
+
show_apz = st.checkbox("Adaptive Price Zone (APZ)")
|
129 |
+
|
130 |
+
# Oscillators
|
131 |
+
with st.expander("Oscillators"):
|
132 |
+
show_adx = st.checkbox("Average Directional Index (ADX)")
|
133 |
+
show_cci = st.checkbox("Commodity Channel Index (CCI)")
|
134 |
+
show_fish = st.checkbox("Fisher Transform")
|
135 |
+
show_ao = st.checkbox("Awesome Oscillator (AO)")
|
136 |
+
show_mi = st.checkbox("Mass Index (MI)")
|
137 |
+
show_wto = st.checkbox("Wave Trend Oscillator (WTO)")
|
138 |
+
show_copp = st.checkbox("Coppock Curve")
|
139 |
+
show_ift_rsi = st.checkbox("Inverse Fisher Transform RSI")
|
140 |
+
|
141 |
+
# Complex Indicators
|
142 |
+
with st.expander("Complex Indicators"):
|
143 |
+
show_ichimoku = st.checkbox("Ichimoku Cloud")
|
144 |
+
show_pivot = st.checkbox("Pivot Points")
|
145 |
+
show_pivot_fib = st.checkbox("Fibonacci Pivot Points")
|
146 |
+
show_basp = st.checkbox("Buyer and Seller Pressure (BASP)")
|
147 |
+
show_baspn = st.checkbox("Normalized BASP")
|
148 |
+
show_dmi = st.checkbox("Directional Movement Index (DMI)")
|
149 |
+
show_ebbp = st.checkbox("Elder Bull/Bear Power")
|
150 |
+
|
151 |
+
st.divider()
|
152 |
+
|
153 |
+
# Parameter settings
|
154 |
+
st.header("βοΈ Parameters")
|
155 |
+
sma_period = st.slider("SMA Period", 5, 50, 20)
|
156 |
+
ema_period = st.slider("EMA Period", 5, 50, 20)
|
157 |
+
rsi_period = st.slider("RSI Period", 5, 30, 14)
|
158 |
+
bb_period = st.slider("Bollinger Bands Period", 10, 30, 20)
|
159 |
+
bb_std = st.slider("Bollinger Bands Std Dev", 1.0, 3.0, 2.0, 0.1)
|
160 |
+
|
161 |
+
|
162 |
+
col1, col2, col3, col4, col5 = st.columns(5)
|
163 |
+
st.divider()
|
164 |
+
@st.cache_data
|
165 |
+
def fetch_data(symbol, period, interval):
|
166 |
+
ticker = yf.Ticker(symbol.upper(), session=session)
|
167 |
+
return ticker.history(period=period, interval=interval)
|
168 |
+
|
169 |
+
# Main content area
|
170 |
+
if col3.button("π Analyze Stock", type="secondary", use_container_width=True):
|
171 |
+
|
172 |
+
try:
|
173 |
+
# Fetch data
|
174 |
+
with st.spinner(f"Fetching data for {symbol.upper()}..."):
|
175 |
+
|
176 |
+
data = fetch_data(symbol, period, interval)
|
177 |
+
|
178 |
+
if data.empty:
|
179 |
+
st.error("No data found for the given symbol. Please check the symbol and try again.")
|
180 |
+
st.stop()
|
181 |
+
|
182 |
+
# Display basic info
|
183 |
+
col1, col2, col3, col4 = st.columns(4)
|
184 |
+
|
185 |
+
with col1:
|
186 |
+
st.metric("Current Price", f"${data['Close'].iloc[-1]:.2f}")
|
187 |
+
|
188 |
+
with col2:
|
189 |
+
price_change = data['Close'].iloc[-1] - data['Close'].iloc[-2]
|
190 |
+
st.metric("Price Change", f"${price_change:.2f}", f"{price_change:.2f}")
|
191 |
+
|
192 |
+
with col3:
|
193 |
+
pct_change = (price_change / data['Close'].iloc[-2]) * 100
|
194 |
+
st.metric("% Change", f"{pct_change:.2f}%", f"{pct_change:.2f}%")
|
195 |
+
|
196 |
+
with col4:
|
197 |
+
st.metric("Volume", f"{data['Volume'].iloc[-1]:,.0f}")
|
198 |
+
|
199 |
+
# Calculate indicators
|
200 |
+
indicators = {}
|
201 |
+
|
202 |
+
# Trend Indicators
|
203 |
+
if show_sma:
|
204 |
+
indicators['SMA'] = SMA(data, sma_period)
|
205 |
+
if show_ema:
|
206 |
+
indicators['EMA'] = EMA(data, ema_period)
|
207 |
+
if show_hma:
|
208 |
+
indicators['HMA'] = HMA(data, 20)
|
209 |
+
if show_wma:
|
210 |
+
indicators['WMA'] = WMA(data, 20)
|
211 |
+
if show_kama:
|
212 |
+
indicators['KAMA'] = KAMA(data)
|
213 |
+
if show_frama:
|
214 |
+
indicators['FRAMA'] = FRAMA(data)
|
215 |
+
if show_evwma:
|
216 |
+
indicators['EVWMA'] = EVWMA(data)
|
217 |
+
if show_vwap:
|
218 |
+
indicators['VWAP'] = VWAP(data)
|
219 |
+
|
220 |
+
# Momentum Indicators
|
221 |
+
if show_rsi:
|
222 |
+
indicators['RSI'] = RSI(data, rsi_period)
|
223 |
+
if show_macd:
|
224 |
+
indicators['MACD'] = MACD(data)
|
225 |
+
if show_stochrsi:
|
226 |
+
indicators['StochRSI'] = STOCHRSI(data)
|
227 |
+
if show_cmo:
|
228 |
+
indicators['CMO'] = CMO(data)
|
229 |
+
if show_roc:
|
230 |
+
indicators['ROC'] = ROC(data)
|
231 |
+
if show_tsi:
|
232 |
+
indicators['TSI'] = TSI(data)
|
233 |
+
if show_kst:
|
234 |
+
indicators['KST'] = KST(data)
|
235 |
+
if show_ppo:
|
236 |
+
indicators['PPO'] = PPO(data)
|
237 |
+
if show_uo:
|
238 |
+
indicators['UO'] = UO(data)
|
239 |
+
|
240 |
+
# Volume Indicators
|
241 |
+
if show_obv:
|
242 |
+
indicators['OBV'] = OBV(data)
|
243 |
+
if show_adl:
|
244 |
+
indicators['ADL'] = ADL(data)
|
245 |
+
if show_chaikin:
|
246 |
+
indicators['Chaikin'] = CHAIKIN(data)
|
247 |
+
if show_efi:
|
248 |
+
indicators['EFI'] = EFI(data)
|
249 |
+
if show_emv:
|
250 |
+
indicators['EMV'] = EMV(data)
|
251 |
+
if show_mfi:
|
252 |
+
indicators['MFI'] = MFI(data)
|
253 |
+
if show_vpt:
|
254 |
+
indicators['VPT'] = VPT(data)
|
255 |
+
if show_fve:
|
256 |
+
indicators['FVE'] = FVE(data)
|
257 |
+
if show_vzo:
|
258 |
+
indicators['VZO'] = VZO(data)
|
259 |
+
|
260 |
+
# Volatility Indicators
|
261 |
+
if show_bollinger:
|
262 |
+
indicators['Bollinger'] = BOLLINGER(data, bb_period, bb_std)
|
263 |
+
if show_kc:
|
264 |
+
indicators['KC'] = KC(data)
|
265 |
+
if show_dc:
|
266 |
+
indicators['DC'] = DC(data)
|
267 |
+
if show_atr:
|
268 |
+
indicators['ATR'] = ATR(data)
|
269 |
+
if show_chandelier:
|
270 |
+
indicators['Chandelier'] = CHANDELIER(data)
|
271 |
+
if show_psar:
|
272 |
+
indicators['PSAR'] = PSAR(data)
|
273 |
+
if show_apz:
|
274 |
+
indicators['APZ'] = APZ(data)
|
275 |
+
|
276 |
+
# Oscillators
|
277 |
+
if show_adx:
|
278 |
+
indicators['ADX'] = ADX(data)
|
279 |
+
if show_cci:
|
280 |
+
indicators['CCI'] = CCI(data)
|
281 |
+
if show_fish:
|
282 |
+
indicators['Fisher'] = FISH(data)
|
283 |
+
if show_ao:
|
284 |
+
indicators['AO'] = AO(data)
|
285 |
+
if show_mi:
|
286 |
+
indicators['MI'] = MI(data)
|
287 |
+
if show_wto:
|
288 |
+
indicators['WTO'] = WTO(data)
|
289 |
+
if show_copp:
|
290 |
+
indicators['Coppock'] = COPP(data)
|
291 |
+
if show_ift_rsi:
|
292 |
+
indicators['IFT_RSI'] = IFT_RSI(data)
|
293 |
+
|
294 |
+
# Complex Indicators
|
295 |
+
if show_ichimoku:
|
296 |
+
indicators['Ichimoku'] = ICHIMOKU(data)
|
297 |
+
if show_pivot:
|
298 |
+
indicators['Pivot'] = PIVOT(data)
|
299 |
+
if show_pivot_fib:
|
300 |
+
indicators['Pivot_Fib'] = PIVOT_FIB(data)
|
301 |
+
if show_basp:
|
302 |
+
indicators['BASP'] = BASP(data)
|
303 |
+
if show_baspn:
|
304 |
+
indicators['BASPN'] = BASPN(data)
|
305 |
+
if show_dmi:
|
306 |
+
indicators['DMI'] = DMI(data)
|
307 |
+
if show_ebbp:
|
308 |
+
indicators['EBBP'] = EBBP(data)
|
309 |
+
|
310 |
+
# Create main price chart
|
311 |
+
fig = make_subplots(
|
312 |
+
rows=4, cols=1,
|
313 |
+
shared_xaxes=True,
|
314 |
+
vertical_spacing=0.05,
|
315 |
+
subplot_titles=('Price Chart', 'Volume', 'Oscillators', 'Additional Indicators'),
|
316 |
+
row_heights=[0.5, 0.2, 0.15, 0.15]
|
317 |
+
)
|
318 |
+
|
319 |
+
# Add candlestick chart
|
320 |
+
fig.add_trace(
|
321 |
+
go.Candlestick(
|
322 |
+
x=data.index,
|
323 |
+
open=data['Open'],
|
324 |
+
high=data['High'],
|
325 |
+
low=data['Low'],
|
326 |
+
close=data['Close'],
|
327 |
+
name='Price'
|
328 |
+
),
|
329 |
+
row=1, col=1
|
330 |
+
)
|
331 |
+
|
332 |
+
# Define colors for trend indicators to avoid repetition
|
333 |
+
colors = ["red", "yellow", "green", "purple", "orange", "brown", "pink", "gray", "cyan", "magenta"]
|
334 |
+
color_idx = 0
|
335 |
+
|
336 |
+
# Add trend indicators to price chart (row 1)
|
337 |
+
trend_indicators = ['SMA', 'EMA', 'HMA', 'WMA', 'KAMA', 'FRAMA', 'EVWMA', 'VWAP']
|
338 |
+
for name in trend_indicators:
|
339 |
+
if name in indicators:
|
340 |
+
fig.add_trace(
|
341 |
+
go.Scatter(
|
342 |
+
x=data.index,
|
343 |
+
y=indicators[name].fillna(method='ffill'), # Handle NaNs
|
344 |
+
mode='lines',
|
345 |
+
name=name,
|
346 |
+
line=dict(color=colors[color_idx % len(colors)])
|
347 |
+
),
|
348 |
+
row=1, col=1
|
349 |
+
)
|
350 |
+
color_idx += 1
|
351 |
+
|
352 |
+
# Add volatility indicators to price chart (row 1)
|
353 |
+
if 'Bollinger' in indicators:
|
354 |
+
bb = indicators['Bollinger']
|
355 |
+
fig.add_trace(
|
356 |
+
go.Scatter(
|
357 |
+
x=data.index,
|
358 |
+
y=bb['BB_UPPER'].fillna(method='ffill'),
|
359 |
+
mode='lines',
|
360 |
+
name='BB Upper',
|
361 |
+
line=dict(color='lightblue', dash='dash')
|
362 |
+
),
|
363 |
+
row=1, col=1
|
364 |
+
)
|
365 |
+
fig.add_trace(
|
366 |
+
go.Scatter(
|
367 |
+
x=data.index,
|
368 |
+
y=bb['BB_LOWER'].fillna(method='ffill'),
|
369 |
+
mode='lines',
|
370 |
+
name='BB Lower',
|
371 |
+
line=dict(color='lightblue', dash='dash'),
|
372 |
+
fill='tonexty',
|
373 |
+
fillcolor='rgba(173, 216, 230, 0.2)'
|
374 |
+
),
|
375 |
+
row=1, col=1
|
376 |
+
)
|
377 |
+
|
378 |
+
if 'KC' in indicators:
|
379 |
+
kc = indicators['KC']
|
380 |
+
fig.add_trace(
|
381 |
+
go.Scatter(x=data.index, y=kc['KC_UPPER'].fillna(method='ffill'), name='KC Upper', line=dict(color='orange')),
|
382 |
+
row=1, col=1
|
383 |
+
)
|
384 |
+
fig.add_trace(
|
385 |
+
go.Scatter(x=data.index, y=kc['KC_LOWER'].fillna(method='ffill'), name='KC Lower', line=dict(color='orange')),
|
386 |
+
row=1, col=1
|
387 |
+
)
|
388 |
+
fig.add_trace(
|
389 |
+
go.Scatter(x=data.index, y=kc['KC_MIDDLE'].fillna(method='ffill'), name='KC Middle', line=dict(color='gray', dash='dot')),
|
390 |
+
row=1, col=1
|
391 |
+
)
|
392 |
+
|
393 |
+
if 'DC' in indicators:
|
394 |
+
dc = indicators['DC']
|
395 |
+
fig.add_trace(
|
396 |
+
go.Scatter(x=data.index, y=dc['DC_U'].fillna(method='ffill'), name='DC Upper', line=dict(color='green')),
|
397 |
+
row=1, col=1
|
398 |
+
)
|
399 |
+
fig.add_trace(
|
400 |
+
go.Scatter(x=data.index, y=dc['DC_L'].fillna(method='ffill'), name='DC Lower', line=dict(color='green')),
|
401 |
+
row=1, col=1
|
402 |
+
)
|
403 |
+
fig.add_trace(
|
404 |
+
go.Scatter(x=data.index, y=dc['DC_M'].fillna(method='ffill'), name='DC Middle', line=dict(color='limegreen', dash='dot')),
|
405 |
+
row=1, col=1
|
406 |
+
)
|
407 |
+
|
408 |
+
if 'Chandelier' in indicators:
|
409 |
+
ce = indicators['Chandelier']
|
410 |
+
fig.add_trace(
|
411 |
+
go.Scatter(x=data.index, y=ce['CHANDELIER_Long'].fillna(method='ffill'), name='Chandelier Long', line=dict(color='darkred')),
|
412 |
+
row=1, col=1
|
413 |
+
)
|
414 |
+
fig.add_trace(
|
415 |
+
go.Scatter(x=data.index, y=ce['CHANDELIER_Short'].fillna(method='ffill'), name='Chandelier Short', line=dict(color='darkgreen')),
|
416 |
+
row=1, col=1
|
417 |
+
)
|
418 |
+
|
419 |
+
if 'APZ' in indicators:
|
420 |
+
apz = indicators['APZ']
|
421 |
+
fig.add_trace(
|
422 |
+
go.Scatter(x=data.index, y=apz['APZ_UPPER'].fillna(method='ffill'), name='APZ Upper', line=dict(color='orange', dash='dot')),
|
423 |
+
row=1, col=1
|
424 |
+
)
|
425 |
+
fig.add_trace(
|
426 |
+
go.Scatter(x=data.index, y=apz['APZ_LOWER'].fillna(method='ffill'), name='APZ Lower', line=dict(color='coral', dash='dot')),
|
427 |
+
row=1, col=1
|
428 |
+
)
|
429 |
+
|
430 |
+
if 'Ichimoku' in indicators:
|
431 |
+
ichimoku = indicators['Ichimoku']
|
432 |
+
fig.add_trace(
|
433 |
+
go.Scatter(x=data.index, y=ichimoku['TENKAN'].fillna(method='ffill'), name='Tenkan-sen', line=dict(color='blue')),
|
434 |
+
row=1, col=1
|
435 |
+
)
|
436 |
+
fig.add_trace(
|
437 |
+
go.Scatter(x=data.index, y=ichimoku['KIJUN'].fillna(method='ffill'), name='Kijun-sen', line=dict(color='red')),
|
438 |
+
row=1, col=1
|
439 |
+
)
|
440 |
+
fig.add_trace(
|
441 |
+
go.Scatter(x=data.index, y=ichimoku['SENKOU_A'].fillna(method='ffill'), name='Senkou A', line=dict(color='green')),
|
442 |
+
row=1, col=1
|
443 |
+
)
|
444 |
+
fig.add_trace(
|
445 |
+
go.Scatter(x=data.index, y=ichimoku['SENKOU_B'].fillna(method='ffill'), name='Senkou B', line=dict(color='red'), fill='tonexty', fillcolor='rgba(0, 255, 0, 0.2)'),
|
446 |
+
row=1, col=1
|
447 |
+
)
|
448 |
+
fig.add_trace(
|
449 |
+
go.Scatter(x=data.index, y=ichimoku['CHIKOU'].fillna(method='ffill'), name='Chikou Span', line=dict(color='purple')),
|
450 |
+
row=1, col=1
|
451 |
+
)
|
452 |
+
|
453 |
+
if 'Pivot' in indicators:
|
454 |
+
pivot = indicators['Pivot']
|
455 |
+
for col in ['pivot', 'r1', 'r2', 'r3', 's1', 's2', 's3']:
|
456 |
+
fig.add_trace(
|
457 |
+
go.Scatter(x=data.index, y=pivot[col].fillna(method='ffill'), name=f'Pivot {col.upper()}', line=dict(dash='dash')),
|
458 |
+
row=1, col=1
|
459 |
+
)
|
460 |
+
|
461 |
+
if 'Pivot_Fib' in indicators:
|
462 |
+
pivot_fib = indicators['Pivot_Fib']
|
463 |
+
for col in ['pivot', 'r1', 'r2', 'r3', 's1', 's2', 's3']:
|
464 |
+
fig.add_trace(
|
465 |
+
go.Scatter(x=data.index, y=pivot_fib[col].fillna(method='ffill'), name=f'Fib Pivot {col.upper()}', line=dict(dash='dot')),
|
466 |
+
row=1, col=1
|
467 |
+
)
|
468 |
+
|
469 |
+
if 'PSAR' in indicators:
|
470 |
+
psar = indicators['PSAR']
|
471 |
+
fig.add_trace(
|
472 |
+
go.Scatter(x=data.index, y=psar['psar'].fillna(method='ffill'), name='PSAR', mode='markers', marker=dict(size=5, color='blue')),
|
473 |
+
row=1, col=1
|
474 |
+
)
|
475 |
+
fig.add_trace(
|
476 |
+
go.Scatter(x=data.index, y=psar['psarbull'].fillna(method='ffill'), name='PSAR Bull', mode='markers', marker=dict(size=5, color='green')),
|
477 |
+
row=1, col=1
|
478 |
+
)
|
479 |
+
fig.add_trace(
|
480 |
+
go.Scatter(x=data.index, y=psar['psarbear'].fillna(method='ffill'), name='PSAR Bear', mode='markers', marker=dict(size=5, color='red')),
|
481 |
+
row=1, col=1
|
482 |
+
)
|
483 |
+
|
484 |
+
# Add volume (row 2)
|
485 |
+
fig.add_trace(
|
486 |
+
go.Bar(
|
487 |
+
x=data.index,
|
488 |
+
y=data['Volume'],
|
489 |
+
name='Volume',
|
490 |
+
marker_color='lightblue'
|
491 |
+
),
|
492 |
+
row=2, col=1
|
493 |
+
)
|
494 |
+
|
495 |
+
# Add oscillators to row 3
|
496 |
+
if 'RSI' in indicators:
|
497 |
+
fig.add_trace(
|
498 |
+
go.Scatter(x=data.index, y=indicators['RSI'].fillna(method='ffill'), mode='lines', name='RSI', line=dict(color='purple')),
|
499 |
+
row=3, col=1
|
500 |
+
)
|
501 |
+
fig.add_hline(y=70, line_dash="dash", line_color="red", row=3, col=1)
|
502 |
+
fig.add_hline(y=30, line_dash="dash", line_color="green", row=3, col=1)
|
503 |
+
|
504 |
+
if 'StochRSI' in indicators:
|
505 |
+
fig.add_trace(
|
506 |
+
go.Scatter(x=data.index, y=indicators['StochRSI'].fillna(method='ffill'), mode='lines', name='StochRSI', line=dict(color='orange')),
|
507 |
+
row=3, col=1
|
508 |
+
)
|
509 |
+
fig.add_hline(y=80, line_dash="dash", line_color="red", row=3, col=1)
|
510 |
+
fig.add_hline(y=20, line_dash="dash", line_color="green", row=3, col=1)
|
511 |
+
|
512 |
+
if 'CCI' in indicators:
|
513 |
+
fig.add_trace(
|
514 |
+
go.Scatter(x=data.index, y=indicators['CCI'].fillna(method='ffill'), mode='lines', name='CCI', line=dict(color='blue')),
|
515 |
+
row=3, col=1
|
516 |
+
)
|
517 |
+
fig.add_hline(y=100, line_dash="dash", line_color="red", row=3, col=1)
|
518 |
+
fig.add_hline(y=-100, line_dash="dash", line_color="green", row=3, col=1)
|
519 |
+
|
520 |
+
if 'ADX' in indicators:
|
521 |
+
fig.add_trace(
|
522 |
+
go.Scatter(x=data.index, y=indicators['ADX'].fillna(method='ffill'), mode='lines', name='ADX', line=dict(color='cyan')),
|
523 |
+
row=3, col=1
|
524 |
+
)
|
525 |
+
fig.add_hline(y=25, line_dash="dash", line_color="gray", row=3, col=1)
|
526 |
+
|
527 |
+
if 'Fisher' in indicators:
|
528 |
+
fig.add_trace(
|
529 |
+
go.Scatter(x=data.index, y=indicators['Fisher'].fillna(method='ffill'), mode='lines', name='Fisher Transform', line=dict(color='magenta')),
|
530 |
+
row=3, col=1
|
531 |
+
)
|
532 |
+
|
533 |
+
if 'AO' in indicators:
|
534 |
+
fig.add_trace(
|
535 |
+
go.Scatter(x=data.index, y=indicators['AO'].fillna(method='ffill'), mode='lines', name='Awesome Oscillator', line=dict(color='green')),
|
536 |
+
row=3, col=1
|
537 |
+
)
|
538 |
+
fig.add_hline(y=0, line_dash="dash", line_color="gray", row=3, col=1)
|
539 |
+
|
540 |
+
if 'MI' in indicators:
|
541 |
+
fig.add_trace(
|
542 |
+
go.Scatter(x=data.index, y=indicators['MI'].fillna(method='ffill'), mode='lines', name='Mass Index', line=dict(color='purple')),
|
543 |
+
row=3, col=1
|
544 |
+
)
|
545 |
+
fig.add_hline(y=27, line_dash="dash", line_color="red", row=3, col=1)
|
546 |
+
|
547 |
+
if 'IFT_RSI' in indicators:
|
548 |
+
fig.add_trace(
|
549 |
+
go.Scatter(x=data.index, y=indicators['IFT_RSI'].fillna(method='ffill'), mode='lines', name='IFT RSI', line=dict(color='orange')),
|
550 |
+
row=3, col=1
|
551 |
+
)
|
552 |
+
|
553 |
+
# Add momentum and volume indicators to row 4
|
554 |
+
if 'MACD' in indicators:
|
555 |
+
macd = indicators['MACD']
|
556 |
+
macd_line = macd['MACD']
|
557 |
+
signal_line = macd['SIGNAL']
|
558 |
+
macd_histogram = macd_line - signal_line
|
559 |
+
fig.add_trace(
|
560 |
+
go.Scatter(x=data.index, y=macd_line.fillna(method='ffill'), mode='lines', name='MACD', line=dict(color='#04c6fc')),
|
561 |
+
row=4, col=1
|
562 |
+
)
|
563 |
+
fig.add_trace(
|
564 |
+
go.Scatter(x=data.index, y=signal_line.fillna(method='ffill'), mode='lines', name='MACD Signal', line=dict(color='blue', dash='dash')),
|
565 |
+
row=4, col=1
|
566 |
+
)
|
567 |
+
fig.add_trace(
|
568 |
+
go.Bar(x=data.index, y=macd_histogram.fillna(0), name='MACD Histogram', marker_color=['green' if val >= 0 else 'red' for val in macd_histogram]),
|
569 |
+
row=4, col=1
|
570 |
+
)
|
571 |
+
|
572 |
+
if 'TSI' in indicators:
|
573 |
+
tsi = indicators['TSI']
|
574 |
+
fig.add_trace(
|
575 |
+
go.Scatter(x=data.index, y=tsi['TSI'].fillna(method='ffill'), name='TSI', line=dict(color='blue')),
|
576 |
+
row=4, col=1
|
577 |
+
)
|
578 |
+
fig.add_trace(
|
579 |
+
go.Scatter(x=data.index, y=tsi['signal'].fillna(method='ffill'), name='TSI Signal', line=dict(color='blue', dash='dash')),
|
580 |
+
row=4, col=1
|
581 |
+
)
|
582 |
+
|
583 |
+
if 'KST' in indicators:
|
584 |
+
kst = indicators['KST']
|
585 |
+
fig.add_trace(
|
586 |
+
go.Scatter(x=data.index, y=kst['KST'].fillna(method='ffill'), name='KST', line=dict(color='purple')),
|
587 |
+
row=4, col=1
|
588 |
+
)
|
589 |
+
fig.add_trace(
|
590 |
+
go.Scatter(x=data.index, y=kst['signal'].fillna(method='ffill'), name='KST Signal', line=dict(color='purple', dash='dot')),
|
591 |
+
row=4, col=1
|
592 |
+
)
|
593 |
+
|
594 |
+
if 'PPO' in indicators:
|
595 |
+
ppo = indicators['PPO']
|
596 |
+
fig.add_trace(
|
597 |
+
go.Scatter(x=data.index, y=ppo['PPO'].fillna(method='ffill'), name='PPO', line=dict(color='cyan')),
|
598 |
+
row=4, col=1
|
599 |
+
)
|
600 |
+
fig.add_trace(
|
601 |
+
go.Scatter(x=data.index, y=ppo['PPO_signal'].fillna(method='ffill'), name='PPO Signal', line=dict(color='cyan', dash='dash')),
|
602 |
+
row=4, col=1
|
603 |
+
)
|
604 |
+
fig.add_trace(
|
605 |
+
go.Bar(x=data.index, y=ppo['PPO_histo'].fillna(0), name='PPO Histogram', marker_color=['green' if val >= 0 else 'red' for val in ppo['PPO_histo']]),
|
606 |
+
row=4, col=1
|
607 |
+
)
|
608 |
+
|
609 |
+
if 'CMO' in indicators:
|
610 |
+
fig.add_trace(
|
611 |
+
go.Scatter(x=data.index, y=indicators['CMO'].fillna(method='ffill'), name='CMO', line=dict(color='orange')),
|
612 |
+
row=4, col=1
|
613 |
+
)
|
614 |
+
fig.add_hline(y=50, line_dash="dash", line_color="red", row=4, col=1)
|
615 |
+
fig.add_hline(y=-50, line_dash="dash", line_color="green", row=4, col=1)
|
616 |
+
|
617 |
+
if 'ROC' in indicators:
|
618 |
+
fig.add_trace(
|
619 |
+
go.Scatter(x=data.index, y=indicators['ROC'].fillna(method='ffill'), name='ROC', line=dict(color='green')),
|
620 |
+
row=4, col=1
|
621 |
+
)
|
622 |
+
fig.add_hline(y=0, line_dash="dash", line_color="gray", row=4, col=1)
|
623 |
+
|
624 |
+
if 'UO' in indicators:
|
625 |
+
fig.add_trace(
|
626 |
+
go.Scatter(x=data.index, y=indicators['UO'].fillna(method='ffill'), name='Ultimate Oscillator', line=dict(color='purple')),
|
627 |
+
row=4, col=1
|
628 |
+
)
|
629 |
+
fig.add_hline(y=70, line_dash="dash", line_color="red", row=4, col=1)
|
630 |
+
fig.add_hline(y=30, line_dash="dash", line_color="green", row=4, col=1)
|
631 |
+
|
632 |
+
if 'OBV' in indicators:
|
633 |
+
fig.add_trace(
|
634 |
+
go.Scatter(x=data.index, y=indicators['OBV'].fillna(method='ffill'), name='OBV', line=dict(color='blue')),
|
635 |
+
row=4, col=1
|
636 |
+
)
|
637 |
+
|
638 |
+
if 'ADL' in indicators:
|
639 |
+
fig.add_trace(
|
640 |
+
go.Scatter(x=data.index, y=indicators['ADL'].fillna(method='ffill'), name='ADL', line=dict(color='cyan')),
|
641 |
+
row=4, col=1
|
642 |
+
)
|
643 |
+
|
644 |
+
if 'EFI' in indicators:
|
645 |
+
fig.add_trace(
|
646 |
+
go.Scatter(x=data.index, y=indicators['EFI'].fillna(method='ffill'), name='EFI', line=dict(color='magenta')),
|
647 |
+
row=4, col=1
|
648 |
+
)
|
649 |
+
|
650 |
+
if 'EMV' in indicators:
|
651 |
+
fig.add_trace(
|
652 |
+
go.Scatter(x=data.index, y=indicators['EMV'].fillna(method='ffill'), name='EMV', line=dict(color='orange')),
|
653 |
+
row=4, col=1
|
654 |
+
)
|
655 |
+
|
656 |
+
if 'MFI' in indicators:
|
657 |
+
fig.add_trace(
|
658 |
+
go.Scatter(x=data.index, y=indicators['MFI'].fillna(method='ffill'), name='MFI', line=dict(color='blue')),
|
659 |
+
row=4, col=1
|
660 |
+
)
|
661 |
+
fig.add_hline(y=80, line_dash="dash", line_color="red", row=4, col=1)
|
662 |
+
fig.add_hline(y=20, line_dash="dash", line_color="green", row=4, col=1)
|
663 |
+
|
664 |
+
if 'VPT' in indicators:
|
665 |
+
fig.add_trace(
|
666 |
+
go.Scatter(x=data.index, y=indicators['VPT'].fillna(method='ffill'), name='VPT', line=dict(color='blue', dash='dot')),
|
667 |
+
row=4, col=1
|
668 |
+
)
|
669 |
+
|
670 |
+
if 'FVE' in indicators:
|
671 |
+
fig.add_trace(
|
672 |
+
go.Scatter(x=data.index, y=indicators['FVE'].fillna(method='ffill'), name='FVE', line=dict(color='blue', dash='dot')),
|
673 |
+
row=4, col=1
|
674 |
+
)
|
675 |
+
|
676 |
+
if 'VZO' in indicators:
|
677 |
+
fig.add_trace(
|
678 |
+
go.Scatter(x=data.index, y=indicators['VZO'].fillna(method='ffill'), name='VZO', line=dict(color='blue', dash='dot')),
|
679 |
+
row=4, col=1
|
680 |
+
)
|
681 |
+
fig.add_hline(y=40, line_dash="dash", line_color="green", row=4, col=1)
|
682 |
+
fig.add_hline(y=5, line_dash="dash", line_color="red", row=4, col=1)
|
683 |
+
fig.add_hline(y=-5, line_dash="dash", line_color="red", row=4, col=1)
|
684 |
+
fig.add_hline(y=-40, line_dash="dash", line_color="green", row=4, col=1)
|
685 |
+
|
686 |
+
if 'WTO' in indicators:
|
687 |
+
wto = indicators['WTO']
|
688 |
+
fig.add_trace(
|
689 |
+
go.Scatter(x=data.index, y=wto['WT1'].fillna(method='ffill'), name='WTO WT1', line=dict(color='cyan')),
|
690 |
+
row=4, col=1
|
691 |
+
)
|
692 |
+
fig.add_trace(
|
693 |
+
go.Scatter(x=data.index, y=wto['WT2'].fillna(method='ffill'), name='WTO WT2', line=dict(color='cyan', dash='dash')),
|
694 |
+
row=4, col=1
|
695 |
+
)
|
696 |
+
|
697 |
+
if 'Coppock' in indicators:
|
698 |
+
fig.add_trace(
|
699 |
+
go.Scatter(x=data.index, y=indicators['Coppock'].fillna(method='ffill'), name='Coppock Curve', line=dict(color='purple')),
|
700 |
+
row=4, col=1
|
701 |
+
)
|
702 |
+
fig.add_hline(y=0, line_dash="dash", line_color="gray", row=4, col=1)
|
703 |
+
|
704 |
+
if 'BASP' in indicators:
|
705 |
+
basp = indicators['BASP']
|
706 |
+
fig.add_trace(
|
707 |
+
go.Scatter(x=data.index, y=basp['Buy'].fillna(method='ffill'), name='BASP Buy', line=dict(color='green')),
|
708 |
+
row=4, col=1
|
709 |
+
)
|
710 |
+
fig.add_trace(
|
711 |
+
go.Scatter(x=data.index, y=basp['Sell'].fillna(method='ffill'), name='BASP Sell', line=dict(color='red')),
|
712 |
+
row=4, col=1
|
713 |
+
)
|
714 |
+
|
715 |
+
if 'BASPN' in indicators:
|
716 |
+
baspn = indicators['BASPN']
|
717 |
+
fig.add_trace(
|
718 |
+
go.Scatter(x=data.index, y=baspn['BASPN_Buy'].fillna(method='ffill'), name='BASPN Buy', line=dict(color='limegreen')),
|
719 |
+
row=4, col=1
|
720 |
+
)
|
721 |
+
fig.add_trace(
|
722 |
+
go.Scatter(x=data.index, y=baspn['BASPN_Sell'].fillna(method='ffill'), name='BASPN Sell', line=dict(color='coral')),
|
723 |
+
row=4, col=1
|
724 |
+
)
|
725 |
+
|
726 |
+
if 'DMI' in indicators:
|
727 |
+
dmi = indicators['DMI']
|
728 |
+
fig.add_trace(
|
729 |
+
go.Scatter(x=data.index, y=dmi['+DI'].fillna(method='ffill'), name='+DI', line=dict(color='blue')),
|
730 |
+
row=4, col=1
|
731 |
+
)
|
732 |
+
fig.add_trace(
|
733 |
+
go.Scatter(x=data.index, y=dmi['-DI'].fillna(method='ffill'), name='-DI', line=dict(color='red')),
|
734 |
+
row=4, col=1
|
735 |
+
)
|
736 |
+
|
737 |
+
if 'EBBP' in indicators:
|
738 |
+
ebbp = indicators['EBBP']
|
739 |
+
fig.add_trace(
|
740 |
+
go.Scatter(x=data.index, y=ebbp['Bull'].fillna(method='ffill'), name='Bull Power', line=dict(color='green')),
|
741 |
+
row=4, col=1
|
742 |
+
)
|
743 |
+
fig.add_trace(
|
744 |
+
go.Scatter(x=data.index, y=ebbp['Bear'].fillna(method='ffill'), name='Bear Power', line=dict(color='red')),
|
745 |
+
row=4, col=1
|
746 |
+
)
|
747 |
+
|
748 |
+
if 'ATR' in indicators:
|
749 |
+
fig.add_trace(
|
750 |
+
go.Scatter(x=data.index, y=indicators['ATR'].fillna(method='ffill'), name='ATR', line=dict(color='blue')),
|
751 |
+
row=4, col=1
|
752 |
+
)
|
753 |
+
|
754 |
+
# Update layout
|
755 |
+
fig.update_layout(
|
756 |
+
title=f'{symbol.upper()} - Technical Analysis',
|
757 |
+
xaxis_rangeslider_visible=False,
|
758 |
+
height=800,
|
759 |
+
showlegend=True
|
760 |
+
)
|
761 |
+
|
762 |
+
st.plotly_chart(fig, use_container_width=True)
|
763 |
+
|
764 |
+
# Display indicator values in tabs
|
765 |
+
st.subheader("π Indicator Values")
|
766 |
+
|
767 |
+
# Create tabs for different categories
|
768 |
+
tab1, tab2, tab3, tab4, tab5 = st.tabs(["Trend", "Momentum", "Volume", "Volatility", "Oscillators"])
|
769 |
+
|
770 |
+
with tab1:
|
771 |
+
st.markdown("### Trend Indicators")
|
772 |
+
trend_cols = st.columns(3)
|
773 |
+
col_idx = 0
|
774 |
+
|
775 |
+
for name, indicator in indicators.items():
|
776 |
+
if name in ['SMA', 'EMA', 'HMA', 'WMA', 'KAMA', 'FRAMA', 'EVWMA', 'VWAP']:
|
777 |
+
with trend_cols[col_idx % 3]:
|
778 |
+
if isinstance(indicator, pd.Series):
|
779 |
+
st.metric(name, f"{indicator.iloc[-1]:.2f}")
|
780 |
+
col_idx += 1
|
781 |
+
|
782 |
+
with tab2:
|
783 |
+
st.markdown("### Momentum Indicators")
|
784 |
+
momentum_cols = st.columns(3)
|
785 |
+
col_idx = 0
|
786 |
+
|
787 |
+
for name, indicator in indicators.items():
|
788 |
+
if name in ['RSI', 'StochRSI', 'CMO', 'ROC', 'UO']:
|
789 |
+
with momentum_cols[col_idx % 3]:
|
790 |
+
if isinstance(indicator, pd.Series):
|
791 |
+
st.metric(name, f"{indicator.iloc[-1]:.2f}")
|
792 |
+
col_idx += 1
|
793 |
+
|
794 |
+
with tab3:
|
795 |
+
st.markdown("### Volume Indicators")
|
796 |
+
volume_cols = st.columns(3)
|
797 |
+
col_idx = 0
|
798 |
+
|
799 |
+
for name, indicator in indicators.items():
|
800 |
+
if name in ['OBV', 'ADL', 'EFI', 'EMV', 'MFI', 'VPT', 'FVE', 'VZO']:
|
801 |
+
with volume_cols[col_idx % 3]:
|
802 |
+
if isinstance(indicator, pd.Series):
|
803 |
+
st.metric(name, f"{indicator.iloc[-1]:.2f}")
|
804 |
+
col_idx += 1
|
805 |
+
|
806 |
+
with tab4:
|
807 |
+
st.markdown("### Volatility Indicators")
|
808 |
+
volatility_cols = st.columns(3)
|
809 |
+
col_idx = 0
|
810 |
+
|
811 |
+
for name, indicator in indicators.items():
|
812 |
+
if name in ['ATR', 'PSAR']:
|
813 |
+
with volatility_cols[col_idx % 3]:
|
814 |
+
if isinstance(indicator, pd.Series):
|
815 |
+
st.metric(name, f"{indicator.iloc[-1]:.2f}")
|
816 |
+
col_idx += 1
|
817 |
+
|
818 |
+
with tab5:
|
819 |
+
st.markdown("### Oscillators")
|
820 |
+
osc_cols = st.columns(3)
|
821 |
+
col_idx = 0
|
822 |
+
|
823 |
+
for name, indicator in indicators.items():
|
824 |
+
if name in ['ADX', 'CCI', 'Fisher', 'AO', 'MI']:
|
825 |
+
with osc_cols[col_idx % 3]:
|
826 |
+
if isinstance(indicator, pd.Series):
|
827 |
+
st.metric(name, f"{indicator.iloc[-1]:.2f}")
|
828 |
+
col_idx += 1
|
829 |
+
|
830 |
+
# Raw data section
|
831 |
+
with st.expander("π Raw Data"):
|
832 |
+
st.dataframe(data.tail(50))
|
833 |
+
|
834 |
+
# Download section
|
835 |
+
st.subheader("πΎ Download Data")
|
836 |
+
|
837 |
+
# Combine all indicators into one DataFrame
|
838 |
+
combined_df = data.copy()
|
839 |
+
for name, indicator in indicators.items():
|
840 |
+
if isinstance(indicator, pd.Series):
|
841 |
+
combined_df[name] = indicator
|
842 |
+
elif isinstance(indicator, pd.DataFrame):
|
843 |
+
for col in indicator.columns:
|
844 |
+
combined_df[f"{name}_{col}"] = indicator[col]
|
845 |
+
|
846 |
+
csv = combined_df.to_csv()
|
847 |
+
st.download_button(
|
848 |
+
label="Download CSV",
|
849 |
+
data=csv,
|
850 |
+
file_name=f'{symbol}_technical_analysis.csv',
|
851 |
+
mime='text/csv'
|
852 |
+
)
|
853 |
+
|
854 |
+
except Exception as e:
|
855 |
+
st.error(f"An error occurred: {str(e)}")
|
856 |
+
st.error("Please check your internet connection and try again.")
|
857 |
+
|
858 |
+
# Instructions
|
859 |
+
else:
|
860 |
+
st.markdown("""
|
861 |
+
## π How to Use This Dashboard
|
862 |
+
|
863 |
+
1. **Enter a stock symbol** in the sidebar (e.g., AAPL, GOOGL, MSFT) for Indian Stocks, use NSE symbols like RELIANCE.NS
|
864 |
+
or BHEL.NS.
|
865 |
+
2. **Select time period and interval** for the data
|
866 |
+
3. **Choose technical indicators** you want to analyze
|
867 |
+
4. **Adjust parameters** for the indicators
|
868 |
+
5. **Click "Analyze Stock"** to generate the analysis
|
869 |
+
|
870 |
+
### π Available Indicators
|
871 |
+
|
872 |
+
This dashboard includes **40+ technical indicators** across multiple categories:
|
873 |
+
|
874 |
+
- **Trend Indicators**: SMA, EMA, HMA, WMA, KAMA, FRAMA, EVWMA, VWAP
|
875 |
+
- **Momentum Indicators**: RSI, MACD, Stochastic RSI, CMO, ROC, TSI, KST, PPO, UO
|
876 |
+
- **Volume Indicators**: OBV, ADL, Chaikin Oscillator, EFI, EMV, MFI, VPT, FVE, VZO
|
877 |
+
- **Volatility Indicators**: Bollinger Bands, Keltner Channels, Donchian Channels, ATR, Chandelier Exit, Parabolic SAR
|
878 |
+
- **Oscillators**: ADX, CCI, Fisher Transform, Awesome Oscillator, Mass Index, Wave Trend Oscillator
|
879 |
+
- **Complex Indicators**: Ichimoku Cloud, Pivot Points, Fibonacci Pivots, BASP, DMI, Elder Bull/Bear Power
|
880 |
+
|
881 |
+
### π‘ Tips
|
882 |
+
|
883 |
+
- Use multiple indicators together for better analysis
|
884 |
+
- Adjust parameters based on your trading timeframe
|
885 |
+
- Download the data for further analysis
|
886 |
+
- Check different time periods to understand trends
|
887 |
+
""")
|
888 |
+
|
889 |
+
# Footer
|
890 |
+
st.markdown("---")
|
891 |
+
st.markdown("**Technical Analysis Dashboard** | Built with Streamlit & Python | Data from Yahoo Finance")
|
892 |
+
st.markdown("---")
|
893 |
+
st.markdown("**Made By Zane Vijay Falcao**")
|