File size: 30,621 Bytes
4917185
 
1e337d7
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4917185
063c8a6
4917185
 
063c8a6
1e337d7
 
 
 
 
 
 
 
 
 
 
 
4917185
 
 
 
 
1e337d7
 
 
 
 
 
 
4917185
1e337d7
4917185
 
1e337d7
 
 
 
 
 
 
 
 
 
4917185
1e337d7
 
 
 
 
 
 
 
4917185
1e337d7
 
 
 
 
 
 
 
4917185
1e337d7
 
 
 
 
 
4917185
1e337d7
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4917185
1e337d7
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4917185
1e337d7
4917185
 
 
 
 
1e337d7
 
 
 
 
 
4917185
1e337d7
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4917185
 
 
 
 
 
 
 
1e337d7
 
 
 
 
 
 
 
4917185
 
 
 
1e337d7
 
 
4917185
 
1e337d7
 
4917185
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1e337d7
 
 
 
 
 
 
 
 
 
 
4917185
 
 
1e337d7
 
 
4917185
1e337d7
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
0af298e
1e337d7
 
 
5f04784
1e337d7
 
 
 
 
25a20c9
89697d8
25a20c9
1e337d7
 
 
 
 
25a20c9
 
 
1e337d7
 
 
 
 
 
4917185
89697d8
1e337d7
 
89697d8
1e337d7
 
 
 
 
 
 
 
 
 
 
 
 
4917185
1e337d7
 
 
 
 
4917185
1e337d7
4917185
 
 
1e337d7
 
 
 
 
 
 
 
 
 
4917185
1e337d7
4917185
 
 
1e337d7
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4917185
 
1e337d7
 
 
4917185
1e337d7
 
4917185
 
 
 
1e337d7
4917185
 
 
1e337d7
 
 
4917185
1e337d7
 
 
 
 
 
 
 
4917185
1e337d7
 
 
 
 
 
 
4917185
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1e337d7
 
4917185
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1e337d7
 
 
 
 
 
4917185
1e337d7
 
 
 
4917185
1e337d7
4917185
 
 
1e337d7
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4917185
1e337d7
 
 
4917185
1e337d7
 
4917185
1e337d7
4917185
1e337d7
 
 
 
 
 
 
 
 
 
 
 
 
 
4917185
 
 
 
 
 
 
 
1e337d7
4917185
 
1e337d7
 
4917185
1e337d7
 
4917185
 
1e337d7
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4917185
1e337d7
 
 
 
4917185
 
 
 
 
 
1e337d7
4917185
1e337d7
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
from fastapi import FastAPI, HTTPException, Query, Request, Response
from fastapi.responses import HTMLResponse, JSONResponse, FileResponse
from fastapi.middleware.cors import CORSMiddleware
import pandas as pd
import numpy as np
from geopy.distance import geodesic
import folium
from folium import plugins
import osmnx as ox
import networkx as nx
from datetime import datetime
import json
import matplotlib.pyplot as plt
import plotly.express as px
import os
import time
from functools import lru_cache
from rtree import index
from pydantic import BaseModel, Field
from typing import List, Dict, Any, Optional

# Create app instance
app = FastAPI(title="Store Locator API")

# Add CORS middleware
app.add_middleware(
    CORSMiddleware,
    allow_origins=["*"],
    allow_credentials=True,
    allow_methods=["*"],
    allow_headers=["*"],
)

# Create temp directory for files
os.makedirs('temp', exist_ok=True)

# Load and prepare the store data
stores_df = pd.read_csv('dataset of 50 stores.csv')

# Custom JSON encoder for numpy types
class NumpyJSONEncoder(json.JSONEncoder):
    def default(self, obj):
        if isinstance(obj, np.integer):
            return int(obj)
        elif isinstance(obj, np.floating):
            return float(obj)
        elif isinstance(obj, np.ndarray):
            return obj.tolist()
        return super().default(obj)

# Pydantic models for response validation
class StoreLocation(BaseModel):
    lat: float
    lon: float

class Store(BaseModel):
    store_name: str
    address: str
    contact: str
    distance: float
    estimated_delivery_time: int
    product_categories: str
    location: StoreLocation

class StoresResponse(BaseModel):
    status: str
    stores: List[Store]

class ErrorResponse(BaseModel):
    status: str
    message: str
    
class StoreLocator:
    def __init__(self, stores_dataframe):
        self.stores_df = stores_dataframe
        self.network_graph = None
        self.graph_cache = {}  # Cache for network graphs
        self.spatial_index = self._build_spatial_index()

    @lru_cache(maxsize=50)     
    def initialize_graph(self, center_point, dist=20000):
        """Initialize road network graph with caching"""
        cache_key = f"{center_point[0]}_{center_point[1]}"
        if cache_key in self.graph_cache:
            self.network_graph = self.graph_cache[cache_key]
            return True
        try:
            self.network_graph = ox.graph_from_point(center_point, dist=dist, network_type="drive")
            self.network_graph = ox.add_edge_speeds(self.network_graph)
            self.network_graph = ox.add_edge_travel_times(self.network_graph)
            return True
        except Exception as e:
            print(f"Error initializing graph: {str(e)}")
            return False
        
    def _build_spatial_index(self):
        idx = index.Index()
        for i, row in self.stores_df.iterrows():
            idx.insert(i, (row['Latitude'], row['Longitude'], 
                          row['Latitude'], row['Longitude']))
        return idx

    def calculate_distance(self, lat1, lon1, lat2, lon2):
        """Calculate direct distance between two points"""
        return geodesic((lat1, lon1), (lat2, lon2)).kilometers

    def estimate_delivery_time(self, distance, current_time=None):
        """Estimate delivery time based on distance and current time"""
        if current_time is None:
            current_time = datetime.now()

        # Base time: 5 mins base + 2 mins per km
        base_minutes = 5 + (distance * 2)
        
        # Apply traffic multiplier based on time of day
        hour = current_time.hour
        if hour in [8, 9, 10, 17, 18, 19]:  # Peak hours
            multiplier = 1.5
        elif hour in [23, 0, 1, 2, 3, 4]:   # Off-peak hours
            multiplier = 0.8
        else:                                # Normal hours
            multiplier = 1.0
            
        return round(base_minutes * multiplier)
    
    def find_nearby_stores(self, lat, lon, radius=5):
        """Find stores within radius using spatial index"""
        nearby_stores = []
        bbox = (lat - radius/111.0, lon - radius/111.0, 
               lat + radius/111.0, lon + radius/111.0)
        
        for store_id in self.spatial_index.intersection(bbox):
            store = self.stores_df.iloc[store_id]
            distance = self.calculate_distance(lat, lon, 
                                            store['Latitude'], 
                                            store['Longitude'])
            if distance <= radius:
                delivery_time = self.estimate_delivery_time(distance)
                nearby_stores.append({
                    'store_name': store['Store Name'],
                    'address': store['Address'],
                    'contact': str(store['Contact Number']),  # Convert to string to avoid int64 issues
                    'distance': round(distance, 2),
                    'estimated_delivery_time': int(delivery_time),  # Ensure integer type
                    'product_categories': store['Product Categories'],
                    'location': {
                        'lat': float(store['Latitude']),  # Ensure float type
                        'lon': float(store['Longitude'])  # Ensure float type
                    }
                })
        
        return sorted(nearby_stores, key=lambda x: x['distance'])

    def create_store_map(self, center_lat, center_lon, radius=5):
        """Create an interactive map with store locations"""
        # Create base map
        m = folium.Map(location=[center_lat, center_lon], 
                      zoom_start=13,
                      tiles="cartodbpositron",
                      prefer_canvas=True
                      )
        
        # Create marker cluster for better performance with many markers
        marker_cluster = plugins.MarkerCluster().add_to(m)
        # Add stores to map
        nearby_stores = self.find_nearby_stores(center_lat, center_lon, radius)
        
        for store in nearby_stores:
            # Prepare popup content
            popup_content = f"""
            <div style='width: 200px'>
                <b>{store['store_name']}</b><br>
                Address: {store['address']}<br>
                Distance: {store['distance']} km<br>
                Est. Delivery: {store['estimated_delivery_time']} mins<br>
                Categories: {store['product_categories']}
            </div>
            """
            
            # Add store marker
            folium.Marker(
                location=[store['location']['lat'], store['location']['lon']],
                popup=folium.Popup(popup_content, max_width=300),
                icon=folium.Icon(color='red', icon='info-sign')
            ).add_to(marker_cluster)
            
            # Add line to show distance from center
            folium.PolyLine(
                locations=[[center_lat, center_lon], 
                          [store['location']['lat'], store['location']['lon']]],
                weight=2,
                color='blue',
                opacity=0.3
            ).add_to(m)
        
        # Add current location marker
        folium.Marker(
            location=[center_lat, center_lon],
            popup='Your Location',
            icon=folium.Icon(color='green', icon='home')
        ).add_to(m)
        
        # Add fullscreen option
        plugins.Fullscreen().add_to(m)
        
        # Add layer control
        folium.LayerControl().add_to(m)
        
        return m
    
    # Initialize store locator
store_locator = StoreLocator(stores_df)

def create_animated_route(G, path, color, weight=3):
    """Create an animated route visualization"""
    features = []
    timestamps = []
        
    # Convert path nodes to coordinates
    route_coords = [
        (G.nodes[node]['y'], G.nodes[node]['x']) 
        for node in path
    ]
        
    # Create features for each segment of the route
    for i in range(len(route_coords) - 1):
        segment = {
                'type': 'Feature',
                'geometry': {
                    'type': 'LineString',
                    'coordinates': [
                        [route_coords[i][1], route_coords[i][0]],
                        [route_coords[i+1][1], route_coords[i+1][0]]
                    ]
                },
                'properties': {
                    'times': [datetime.now().isoformat()],
                    'style': {
                        'color': color,
                        'weight': weight,
                        'opacity': 0.8
                    }
                }
            }
        features.append(segment)
        timestamps.append(datetime.now().isoformat())
        
    return features

def create_route_animation_data(G, path_time, path_length):
    """Create animation data for route visualization"""
    lst_start, lst_end = [], []
    start_x, start_y = [], []
    end_x, end_y = [], []
    lst_length, lst_time = [], []
    
    # Process time-based path
    for a, b in zip(path_time[:-1], path_time[1:]):
        lst_start.append(a)
        lst_end.append(b)
        lst_length.append(round(G.edges[(a,b,0)]['length']))
        lst_time.append(round(G.edges[(a,b,0)]['travel_time']))
        start_x.append(G.nodes[a]['x'])
        start_y.append(G.nodes[a]['y'])
        end_x.append(G.nodes[b]['x'])
        end_y.append(G.nodes[b]['y'])
    
    # Create DataFrame
    df = pd.DataFrame(
        list(zip(lst_start, lst_end, start_x, start_y, end_x, end_y, 
                 lst_length, lst_time)),
        columns=["start", "end", "start_x", "start_y", "end_x", "end_y",
                "length", "travel_time"]
    ).reset_index().rename(columns={"index": "id"})
    
    return df

# Function to clean up temporary files
@app.middleware("http")
async def cleanup_temp_files(request: Request, call_next):
    temp_dir = 'temp'
    if os.path.exists(temp_dir):
        for file in os.listdir(temp_dir):
            file_path = os.path.join(temp_dir, file)
            try:
                if os.path.isfile(file_path) and file.endswith('.html'):
                    # Delete files older than 1 hour
                    if os.path.getmtime(file_path) < time.time() - 3600:
                        os.remove(file_path)
            except Exception as e:
                print(f"Error cleaning up temp files: {e}")
    
    response = await call_next(request)
    return response

@app.get("/", response_class=HTMLResponse)
async def home():
    """API documentation homepage"""
    html_content = f"""
    <!DOCTYPE html>
    <html lang="en">
    <head>
        <meta charset="UTF-8">
        <meta name="viewport" content="width=device-width, initial-scale=1.0">
        <title>falcao-maps API Documentation</title>
        <style>
            body {{
                font-family: Arial, sans-serif;
                margin: 20px;
            }}
            h1, h2 {{
                color: #333;
            }}
            pre {{
                background-color: #f4f4f4;
                padding: 10px;
                border: 1px solid #ddd;
                border-radius: 5px;
            }}
        </style>
    </head>
    <body>
        <h1>Welcome to falcao-maps</h1>
        <button><a href="https://lucifer7210-maps.hf.space" target="_blank" >Link</a></button>
        <p>Based on your uploaded dataset and deployed API, here are example API calls for your client:</p>
        <h2>1. Find Nearby Stores (JSON Response)</h2>
        <pre>
            <a href="https://lucifer7210-maps.hf.space/api/stores/nearby?lat=18.9695&lon=72.8320&radius=0.5">api/stores/nearby?lat=18.9695&lon=72.8320&radius=0.5</a>
        </pre>
        <p>Use this to get store details near Market Road area within 1km</p>

        <h2>2. View Basic Store Map</h2>
        <pre>
        <a href="https://lucifer7210-maps.hf.space/api/stores/map?lat=18.9701&lon=72.8330&radius=0.5" target="_blank">
https://lucifer7210-maps.hf.space/api/stores/map?lat=18.9701&lon=72.8330&radius=0.5
        </a>
        </pre>
        <p>Shows map centered at Main Street with 500m radius</p>

        <h2>3. View All Store Locations with Color Coding</h2>
        <pre>
        <a href="https://lucifer7210-maps.hf.space/api/stores/locations?lat=18.9685&lon=72.8325&radius=2" target="_blank">
            https://lucifer7210-maps.hf.space/api/stores/locations?lat=18.9685&lon=72.8325&radius=2
        </a>
        </pre>
        <p>Shows detailed map with color-coded stores within 2km</p>

        <h2>4. Get Route Between Points</h2>
        <p>Example routes:</p>
        <pre>
# Route from Park Avenue to Hill Road stores
https://lucifer7210-maps.hf.space/api/stores/route?user_lat=18.9710&user_lon=72.8335&store_lat=18.9705&store_lon=72.8345&viz_type=simple

# Route from Main Street to Market Road stores
https://lucifer7210-maps.hf.space/api/stores/route?user_lat=18.9701&user_lon=72.8330&store_lat=18.9695&store_lon=72.8320&viz_type=simple
        </pre>

        <h2>Key Location Points in Dataset:</h2>
        <ul>
            <li>Main Street Area: 18.9701, 72.8330</li>
            <li>Park Avenue: 18.9710, 72.8335</li>
            <li>Market Road: 18.9695, 72.8320</li>
            <li>Shopping Center: 18.9670, 72.8300</li>
            <li>Commercial Street: 18.9690, 72.8340</li>
        </ul>
    </body>
    </html>
    """
    return HTMLResponse(content=html_content)

@app.get("/api/stores/nearby", response_model=StoresResponse, responses={400: {"model": ErrorResponse}})
async def get_nearby_stores(
    lat: float = Query(..., description="Latitude of user location"),
    lon: float = Query(..., description="Longitude of user location"),
    radius: float = Query(5, description="Search radius in kilometers")
):
    """
    Get nearby stores based on user location
    """
    try:
        nearby_stores = store_locator.find_nearby_stores(lat, lon, radius)
        return {"status": "success", "stores": nearby_stores}
    except Exception as e:
        raise HTTPException(status_code=400, detail=str(e))

@app.get("/api/stores/map", response_class=HTMLResponse, responses={400: {"model": ErrorResponse}})
async def get_stores_map(
    lat: float = Query(..., description="Latitude of center point"),
    lon: float = Query(..., description="Longitude of center point"),
    radius: float = Query(5, description="Search radius in kilometers")
):
    """
    Get HTML map with store locations
    """
    try:
        store_map = store_locator.create_store_map(lat, lon, radius)
        
        # Create complete HTML content
        html_content = f"""
        <!DOCTYPE html>
        <html>
        <head>
            <meta charset="utf-8">
            <meta name="viewport" content="width=device-width, initial-scale=1.0, maximum-scale=1.0, user-scalable=no" />
            <title>Stores Map</title>
            <style>
                body {{
                    margin: 0;
                    padding: 0;
                    width: 100vw;
                    height: 100vh;
                    overflow: hidden;
                }}
                #map {{
                    width: 100%;
                    height: 100%;
                }}
            </style>
        </head>
        <body>
            {store_map.get_root().render()}
            <script>
                window.onload = function() {{
                    setTimeout(function() {{
                        window.dispatchEvent(new Event('resize'));
                    }}, 1000);
                }};
            </script>
        </body>
        </html>
        """
        
        # Save the HTML to a file
        file_path = 'temp/stores_map.html'
        with open(file_path, 'w', encoding='utf-8') as f:
            f.write(html_content)
        
        # Return the file
        return FileResponse(file_path, media_type='text/html')
        
    except Exception as e:
        raise HTTPException(status_code=400, detail=str(e))
    
@app.get("/api/stores/route", response_class=HTMLResponse, responses={400: {"model": ErrorResponse}, 404: {"model": ErrorResponse}})
async def get_store_route(
    user_lat: float = Query(..., description="Latitude of user location"),
    user_lon: float = Query(..., description="Longitude of user location"),
    store_lat: float = Query(..., description="Latitude of store location"),
    store_lon: float = Query(..., description="Longitude of store location")
):
    """
    Get route between user location and store
    """
    try:
        # Initialize graph if not already initialized
        if store_locator.network_graph is None:
            store_locator.initialize_graph((user_lat, user_lon))
        
        # Get nearest nodes
        start_node = ox.distance.nearest_nodes(
            store_locator.network_graph, user_lon, user_lat)
        end_node = ox.distance.nearest_nodes(
            store_locator.network_graph, store_lon, store_lat)
        
        try:
            # Calculate paths
            path_time = nx.shortest_path(
                store_locator.network_graph, 
                start_node, 
                end_node, 
                weight='travel_time'
            )
            
            # Create animation data
            lst_start, lst_end = [], []
            start_x, start_y = [], []
            end_x, end_y = [], []
            lst_length, lst_time = [], []

            for a, b in zip(path_time[:-1], path_time[1:]):
                lst_start.append(a)
                lst_end.append(b)
                lst_length.append(round(store_locator.network_graph.edges[(a,b,0)]['length']))
                lst_time.append(round(store_locator.network_graph.edges[(a,b,0)]['travel_time']))
                start_x.append(store_locator.network_graph.nodes[a]['x'])
                start_y.append(store_locator.network_graph.nodes[a]['y'])
                end_x.append(store_locator.network_graph.nodes[b]['x'])
                end_y.append(store_locator.network_graph.nodes[b]['y'])

            df = pd.DataFrame(
                list(zip(lst_start, lst_end, start_x, start_y, end_x, end_y, 
                        lst_length, lst_time)),
                columns=["start", "end", "start_x", "start_y",
                        "end_x", "end_y", "length", "travel_time"]
            ).reset_index().rename(columns={"index": "id"})

            # Create animation using plotly
            df_start = df[df["start"] == start_node]
            df_end = df[df["end"] == end_node]

            fig = px.scatter_mapbox(
                data_frame=df, 
                lon="start_x", 
                lat="start_y",
                zoom=15, 
                width=1000, 
                height=800,
                animation_frame="id",
                mapbox_style="carto-positron"
            )

            # Add driver marker
            fig.data[0].marker = {"size": 12}

            # Add start point
            fig.add_trace(
                px.scatter_mapbox(
                    data_frame=df_start, 
                    lon="start_x", 
                    lat="start_y"
                ).data[0]
            )
            fig.data[1].marker = {"size": 15, "color": "red"}

            # Add end point
            fig.add_trace(
                px.scatter_mapbox(
                    data_frame=df_end, 
                    lon="start_x", 
                    lat="start_y"
                ).data[0]
            )
            fig.data[2].marker = {"size": 15, "color": "green"}

            # Add route
            fig.add_trace(
                px.line_mapbox(
                    data_frame=df, 
                    lon="start_x", 
                    lat="start_y"
                ).data[0]
            )

            # Update layout with slower animation settings
            fig.update_layout(
                showlegend=False,
                margin={"r":0,"t":0,"l":0,"b":0},
                autosize=True,
                height=None,
                updatemenus=[{
                    "type": "buttons",
                    "showactive": False,
                    "y": 0,
                    "x": 0,
                    "xanchor": "left",
                    "yanchor": "bottom",
                    "buttons": [
                        {
                            "label": "Play",
                            "method": "animate",
                            "args": [
                                None,
                                {
                                    "frame": {"duration": 1000, "redraw": True},
                                    "fromcurrent": True,
                                    "transition": {"duration": 800}
                                }
                            ]
                        },
                        {
                            "label": "Pause",
                            "method": "animate",
                            "args": [
                                [None],
                                {
                                    "frame": {"duration": 0, "redraw": False},
                                    "mode": "immediate",
                                    "transition": {"duration": 0}
                                }
                            ]
                        }
                    ]
                }],
                sliders=[{
                    "currentvalue": {"prefix": "Step: "},
                    "pad": {"t": 20},
                    "len": 0.9,
                    "x": 0.1,
                    "xanchor": "left",
                    "y": 0.02,
                    "yanchor": "bottom",
                    "steps": [
                        {
                            "args": [
                                [k],
                                {
                                    "frame": {"duration": 1000, "redraw": True},
                                    "transition": {"duration": 500},
                                    "mode": "immediate"
                                }
                            ],
                            "label": str(k),
                            "method": "animate"
                        } 
                        for k in range(len(df))
                    ]
                }]
            )

            # Create complete HTML content
            html_content = f"""
            <!DOCTYPE html>
            <html>
            <head>
                <meta charset="utf-8">
                <meta name="viewport" content="width=device-width, initial-scale=1.0, maximum-scale=1.0, user-scalable=no" />
                <title>Route Map</title>
                <style>
                    body {{
                        margin: 0;
                        padding: 0;
                        width: 100vw;
                        height: 100vh;
                        overflow: hidden;
                    }}
                    #map-container {{
                        width: 100%;
                        height: 100%;
                    }}
                </style>
            </head>
            <body>
                <div id="map-container">
                    {fig.to_html(include_plotlyjs=True, full_html=False)}
                </div>
                <script>
                    window.onload = function() {{
                        setTimeout(function() {{
                            window.dispatchEvent(new Event('resize'));
                        }}, 1000);
                    }};
                </script>
            </body>
            </html>
            """
            
            # Save the HTML to a file
            file_path = 'temp/route_map.html'
            with open(file_path, 'w', encoding='utf-8') as f:
                f.write(html_content)
            
            # Return the file
            return FileResponse(file_path, media_type='text/html')

        except nx.NetworkXNoPath:
            raise HTTPException(status_code=404, detail="No route found")
            
    except Exception as e:
        raise HTTPException(status_code=400, detail=str(e))
    
@app.get("/api/stores/locations", response_class=HTMLResponse, responses={400: {"model": ErrorResponse}})
async def get_all_store_locations(
    lat: float = Query(..., description="Latitude of center point"),
    lon: float = Query(..., description="Longitude of center point"),
    radius: float = Query(10, description="Search radius in kilometers")
):
    """
    Get a map showing all stores in the given radius with colors based on distance
    """
    try:
        # Get nearby stores
        nearby_stores = store_locator.find_nearby_stores(lat, lon, radius)
        
        # Create base map centered on user location
        m = folium.Map(
            location=[lat, lon],
            zoom_start=12,
            tiles="cartodbpositron"
        )
        
        # Add user location marker
        folium.Marker(
            [lat, lon],
            popup='Your Location',
            icon=folium.Icon(color='green', icon='home')
        ).add_to(m)
        
        # Add markers for each store with color coding based on distance
        for store in nearby_stores:
            # Color code based on distance
            if store['distance'] <= 2:
                color = 'red'  # Very close
            elif store['distance'] <= 5:
                color = 'orange'  # Moderate distance
            else:
                color = 'blue'  # Further away
                
            # Create detailed popup content with mobile-friendly styling
            popup_content = f"""
            <div style='width: 200px; font-size: 14px;'>
                <h4 style='color: {color}; margin: 0 0 8px 0;'>{store['store_name']}</h4>
                <b>Address:</b> {store['address']}<br>
                <b>Distance:</b> {store['distance']} km<br>
                <b>Est. Delivery:</b> {store['estimated_delivery_time']} mins<br>
                <b>Contact:</b> {store['contact']}<br>
                <b>Categories:</b> {store['product_categories']}<br>
                <button onclick="window.location.href='/api/stores/route?user_lat={lat}&user_lon={lon}&store_lat={store['location']['lat']}&store_lon={store['location']['lon']}'" 
                        style='margin-top: 8px; padding: 8px; width: 100%; background-color: #007bff; color: white; border: none; border-radius: 4px;'>
                    Get Route
                </button>
            </div>
            """
            
            # Add store marker
            folium.Marker(
                location=[store['location']['lat'], store['location']['lon']],
                popup=folium.Popup(popup_content, max_width=300),
                icon=folium.Icon(color=color, icon='info-sign'),
                tooltip=f"{store['store_name']} ({store['distance']} km)"
            ).add_to(m)
            
            # Add circle to show distance
            folium.Circle(
                location=[store['location']['lat'], store['location']['lon']],
                radius=store['distance'] * 100,
                color=color,
                fill=True,
                opacity=0.1
            ).add_to(m)
        
        # Add distance circles from user location
        for radius_circle, color in [(2000, 'red'), (5000, 'orange'), (radius * 1000, 'blue')]:
            folium.Circle(
                location=[lat, lon],
                radius=radius_circle,
                color=color,
                fill=False,
                weight=1,
                dash_array='5, 5'
            ).add_to(m)
        
        # Create mobile-friendly HTML content
        html_content = f"""
        <!DOCTYPE html>
        <html>
        <head>
            <meta charset="utf-8">
            <meta name="viewport" content="width=device-width, initial-scale=1.0, maximum-scale=1.0, user-scalable=no" />
            <title>Nearby Stores</title>
            <style>
                body {{
                    margin: 0;
                    padding: 0;
                    width: 100vw;
                    height: 100vh;
                    overflow: hidden;
                }}
                #map {{
                    width: 100%;
                    height: 100%;
                }}
                .legend {{
                    position: fixed;
                    bottom: 20px;
                    right: 20px;
                    background: white;
                    padding: 10px;
                    border-radius: 5px;
                    box-shadow: 0 1px 5px rgba(0,0,0,0.2);
                    font-size: 12px;
                    z-index: 1000;
                }}
                .info-box {{
                    position: fixed;
                    top: 20px;
                    left: 20px;
                    background: white;
                    padding: 10px;
                    border-radius: 5px;
                    box-shadow: 0 1px 5px rgba(0,0,0,0.2);
                    font-size: 12px;
                    z-index: 1000;
                }}
            </style>
        </head>
        <body>
            {m.get_root().render()}
            <div class="legend">
                <b>Distance Zones</b><br>
                <span style="color: red;">●</span> &lt; 2 km<br>
                <span style="color: orange;">●</span> 2-5 km<br>
                <span style="color: blue;">●</span> &gt; 5 km
            </div>
            <div class="info-box">
                <b>Search Radius:</b> {radius} km<br>
                <b>Stores Found:</b> {len(nearby_stores)}
            </div>
            <script>
                window.onload = function() {{
                    setTimeout(function() {{
                        window.dispatchEvent(new Event('resize'));
                    }}, 1000);
                }};
            </script>
        </body>
        </html>
        """
        
        # Save and return the file
        file_path = 'temp/locations_map.html'
        with open(file_path, 'w', encoding='utf-8') as f:
            f.write(html_content)
        
        return FileResponse(file_path, media_type='text/html')
    
    except Exception as e:
        raise HTTPException(status_code=400, detail=str(e))

# Add swagger UI customization
@app.on_event("startup")
async def startup_event():
    app.title = "Store Locator API"
    app.description = "API for locating nearby stores and generating routes"
    app.version = "1.0.0"

# Entry point for running the application
if __name__ == "__main__":
    import uvicorn
    uvicorn.run(app, host="0.0.0.0", port=8000)