File size: 16,648 Bytes
8e0b458
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
# -*- coding: utf-8 -*-
"""H2H model.ipynb

Automatically generated by Colab.

Original file is located at
    https://colab.research.google.com/drive/1uxbLGJ4l9i0bdWy43Oz4rgsyTdA5FTSd
"""

!pip install yfinance

# Data and computation
import pandas as pd
import numpy as np

# Plotting
import matplotlib.pyplot as plt
import seaborn as sns
sns.set_style('whitegrid')
plt.style.use("fivethirtyeight")

# Yahoo Finance data import
import yfinance as yf

# Machine Learning
from sklearn.model_selection import train_test_split
from sklearn.tree import DecisionTreeClassifier
from sklearn.linear_model import LogisticRegression
from sklearn.metrics import accuracy_score, classification_report, confusion_matrix, roc_curve, auc
from sklearn.preprocessing import StandardScaler, RobustScaler
from sklearn.pipeline import Pipeline
import scipy.stats as stats
from sklearn.model_selection import GridSearchCV

# Misc
import warnings
warnings.filterwarnings('ignore')

# Select stocks and date range
symbols = ['ADANIENT.NS',
           'ADANIPORTS.NS', 'APOLLOHOSP.NS', 'ASIANPAINT.NS',
           'AXISBANK.NS', 'BAJAJ-AUTO.NS', 'BAJFINANCE.NS', 'BAJAJFINSV.NS', 'BEL.NS', 'BHARTIARTL.NS', 'CIPLA.NS',
           'COALINDIA.NS', 'DRREDDY.NS', 'EICHERMOT.NS', 'GRASIM.NS', 'HCLTECH.NS', 'HDFCBANK.NS',
           'HDFCLIFE.NS', 'HEROMOTOCO.NS', 'HINDALCO.NS', 'HINDUNILVR.NS', 'ICICIBANK.NS', 'INDUSINDBK.NS',
           'INFY.NS', 'ITC.NS', 'JIOFIN.NS', 'JSWSTEEL.NS', 'KOTAKBANK.NS', 'LT.NS', 'M&M.NS', 'MARUTI.NS',
           'NESTLEIND.NS', 'NTPC.NS', 'ONGC.NS', 'POWERGRID.NS', 'RELIANCE.NS', 'SBILIFE.NS', 'SHRIRAMFIN.NS',
           'SBIN.NS', 'SUNPHARMA.NS', 'TATACONSUM.NS', 'TCS.NS',
           'TATAMOTORS.NS', 'TATASTEEL.NS', 'TECHM.NS',
           'TITAN.NS', 'TRENT.NS', 'ULTRACEMCO.NS',
           'WIPRO.NS',
           'ETERNAL.NS']

start_date = '2024-07-31'
end_date = '2025-07-31'

# Download daily close data for both stocks
raw_data = yf.download(symbols, start=start_date, end=end_date)

# Flatten MultiIndex columns
raw_data.columns = ['_'.join(col).strip() for col in raw_data.columns.values]

# For simplicity, stack to long format and process each stock similarly
data = raw_data.copy()

data

# Helper functions

def SMA(series, period):
    return series.rolling(window=period).mean()

def EMA(series, period):
    return series.ewm(span=period, adjust=False).mean()

def MACD(series, fast=12, slow=26, signal=9):
    ema_fast = EMA(series, fast)
    ema_slow = EMA(series, slow)
    macd = ema_fast - ema_slow
    macd_signal = EMA(macd, signal)
    macd_hist = macd - macd_signal
    return macd, macd_signal, macd_hist

def RSI(series, period=14):
    delta = series.diff()
    gain = (delta.where(delta > 0, 0)).ewm(alpha=1/period, min_periods=period).mean()
    loss = (-delta.where(delta < 0, 0)).ewm(alpha=1/period, min_periods=period).mean()
    RS = gain / loss
    return 100 - (100 / (1 + RS))

def create_volatility_features(df):

    # Calculate returns if not exists
    if 'return_1d' not in df.columns:
        df['return_1d'] = df['Close'].pct_change()

    # Volatility features (crucial for logistic regression)
    for period in [5, 10, 20, 30]:
        df[f'volatility_{period}d'] = df['return_1d'].rolling(period).std()

    # Volatility ratios
    df['vol_ratio_5_20'] = df['volatility_5d'] / df['volatility_20d']
    df['vol_ratio_10_20'] = df['volatility_10d'] / df['volatility_20d']

    # Volatility rank (where current vol sits in historical range)
    df['vol_rank_20'] = df['volatility_5d'].rolling(20).rank(pct=True)
    df['vol_rank_50'] = df['volatility_5d'].rolling(50).rank(pct=True)

    return df

def create_enhanced_lag_features(df):
    """Add comprehensive lag features - Critical for time series"""
    #print("Adding enhanced lag features...")

    # Price momentum lags
    for lag in [1, 2, 3, 5, 10]:
        df[f'return_lag_{lag}'] = df['return_1d'].shift(lag)

    # Technical indicator lags
    for lag in [1, 2, 3]:
        if 'RSI14' in df.columns:
            df[f'rsi_lag_{lag}'] = df['RSI14'].shift(lag)
        if 'MACD' in df.columns:
            df[f'macd_lag_{lag}'] = df['MACD'].shift(lag)

    # Volume lags
    if 'volume_ratio_20' in df.columns:
        for lag in [1, 2]:
            df[f'volume_ratio_lag_{lag}'] = df['volume_ratio_20'].shift(lag)

    return df

def create_volume_features(df):
    """Enhanced volume features"""
    #print("Adding volume features...")

    # Volume moving averages
    df['volume_sma_10'] = df['Volume'].rolling(10).mean()
    df['volume_sma_20'] = df['Volume'].rolling(20).mean()
    df['volume_sma_50'] = df['Volume'].rolling(50).mean()

    # Volume ratios
    df['volume_ratio_10'] = df['Volume'] / df['volume_sma_10']
    df['volume_ratio_20'] = df['Volume'] / df['volume_sma_20']
    df['volume_ratio_50'] = df['Volume'] / df['volume_sma_50']

    # Price-volume features
    df['price_volume'] = df['Close'] * df['Volume']
    df['pv_sma_5'] = df['price_volume'].rolling(5).mean()

    # Volume momentum
    df['volume_momentum_5'] = df['Volume'] / df['Volume'].shift(5)

    return df

def create_momentum_features(df):
    """Add momentum features"""
    #print("Adding momentum features...")

    # Price momentum
    for period in [3, 5, 10, 20]:
        df[f'momentum_{period}d'] = df['Close'] / df['Close'].shift(period) - 1

    # Rate of change
    for period in [5, 10]:
        df[f'roc_{period}d'] = (df['Close'] - df['Close'].shift(period)) / df['Close'].shift(period)

    return df

def create_position_features(df):
    """Add price position features"""
    #print("Adding position features...")

    # Price position in recent range
    for period in [10, 20, 50]:
        df[f'high_{period}d'] = df['High'].rolling(period).max()
        df[f'low_{period}d'] = df['Low'].rolling(period).min()
        df[f'price_position_{period}'] = (df['Close'] - df[f'low_{period}d']) / (df[f'high_{period}d'] - df[f'low_{period}d'])

    # Bollinger Band position (if BB exists)
    if 'SMA20' in df.columns:
        bb_std = df['Close'].rolling(20).std()
        df['bb_upper'] = df['SMA20'] + (bb_std * 2)
        df['bb_lower'] = df['SMA20'] - (bb_std * 2)
        df['bb_position'] = (df['Close'] - df['bb_lower']) / (df['bb_upper'] - df['bb_lower'])

    return df

def create_rolling_stats(df):
    """Add rolling statistical features"""
    #print("Adding rolling statistics...")

    # Rolling statistics of returns
    for period in [5, 10]:
        df[f'return_mean_{period}d'] = df['return_1d'].rolling(period).mean()
        df[f'return_std_{period}d'] = df['return_1d'].rolling(period).std()
        df[f'return_skew_{period}d'] = df['return_1d'].rolling(period).skew()
        df[f'return_kurt_{period}d'] = df['return_1d'].rolling(period).kurt()

    # Rolling statistics of RSI
    if 'RSI14' in df.columns:
        df['rsi_mean_5d'] = df['RSI14'].rolling(5).mean()
        df['rsi_std_5d'] = df['RSI14'].rolling(5).std()

    return df

# Process each stock separately and then concatenate for ML
all_ml_data = []

for ticker in symbols:
    df = pd.DataFrame({
        'Open': data[f'Open_{ticker}'],
        'High': data[f'High_{ticker}'],
        'Low': data[f'Low_{ticker}'],
        'Close': data[f'Close_{ticker}'],
        'Volume': data[f'Volume_{ticker}']
    })

    df['SMA20']  = SMA(df['Close'], 20)
    df['SMA50']  = SMA(df['Close'], 50)
    df['EMA20']  = EMA(df['Close'], 20)
    df['EMA50']  = EMA(df['Close'], 50)
    df['RSI14']  = RSI(df['Close'], 14)
    df['RSI20']  = RSI(df['Close'], 20)
    df['MACD'], df['MACD_signal'], df['MACD_hist'] = MACD(df['Close'])
    df = create_volatility_features(df)
    df = create_enhanced_lag_features(df)
    df = create_volume_features(df)
    df = create_momentum_features(df)
    df = create_position_features(df)

    # Feature: SMA 20 above SMA 50 (bullish crossover)
    df['SMA_crossover'] = (df['SMA20'] > df['SMA50']).astype(int)
    # Feature: RSI oversold signal
    df['RSI_oversold'] = (df['RSI14'] < 30).astype(int)
    # Target: next-day up/down
    df['next_close'] = df['Close'].shift(-1)
    df['target'] = (df['next_close'] > df['Close']).astype(int)

    df['ticker'] = ticker

    # Drop rows with NaN (from indicator calculations)
    df = df.dropna().copy()
    all_ml_data.append(df)

# Concatenate all stocks
ml_data = pd.concat(all_ml_data)
ml_data.reset_index(inplace=True)

ml_data

ml_data.columns

for ticker in ml_data['ticker'].unique():
    plt.figure(figsize=(20,12))
    plt.plot(
        ml_data[ml_data['ticker'] == ticker]['Date'],
        ml_data[ml_data['ticker'] == ticker]['Close'],
        label=f"{ticker}"
    )
    plt.title("Closing Price Over Time")
    plt.xlabel("Date")
    plt.ylabel("Close Price (USD)")
    plt.legend(loc='upper left')

    plt.show()

sample = ml_data[ml_data['ticker'] == 'RELIANCE.NS'].copy()
plt.figure(figsize=(14,7))
plt.plot(sample['Date'], sample['Close'], label='Close')
plt.plot(sample['Date'], sample['SMA20'], label='SMA20')
plt.plot(sample['Date'], sample['SMA50'], label='SMA50')
plt.title('RELIANCE: Close with SMA20 & SMA50')
plt.legend()
plt.show()

plt.figure(figsize=(14,4))
plt.plot(sample['Date'], sample['RSI14'], label='RSI14', color='green')
plt.axhline(70, linestyle='--', color='r')
plt.axhline(30, linestyle='--', color='b')
plt.title('RELIANCE: RSI14 Time Series')
plt.legend()
plt.show()

plt.figure(figsize=(14,4))
plt.plot(sample['Date'], sample['MACD'], label='MACD')
plt.plot(sample['Date'], sample['MACD_signal'], label='MACD Signal')
plt.title('RELIANCE: MACD & Signal')
plt.legend()
plt.show()

# Select features
features = [
    'Close', 'Volume', 'SMA20', 'SMA50', 'EMA20', 'EMA50',
    'RSI14', 'MACD', 'MACD_signal', 'MACD_hist',
    'SMA_crossover', 'RSI_oversold',
    'return_1d', 'volatility_5d', 'volatility_10d', 'volatility_20d',
       'volatility_30d', 'vol_ratio_5_20', 'vol_ratio_10_20', 'vol_rank_20',
       'vol_rank_50', 'return_lag_1', 'return_lag_2', 'return_lag_3',
       'return_lag_5', 'return_lag_10', 'rsi_lag_1', 'macd_lag_1', 'rsi_lag_2',
       'macd_lag_2', 'rsi_lag_3', 'macd_lag_3', 'volume_sma_10',
       'volume_sma_20', 'volume_sma_50', 'volume_ratio_10', 'volume_ratio_20',
       'volume_ratio_50', 'price_volume', 'pv_sma_5', 'volume_momentum_5',
       'momentum_3d', 'momentum_5d', 'momentum_10d', 'momentum_20d', 'roc_5d',
       'roc_10d', 'high_10d', 'low_10d', 'price_position_10', 'high_20d',
       'low_20d', 'price_position_20', 'high_50d', 'low_50d',
       'price_position_50', 'bb_upper', 'bb_lower', 'bb_position',
       'SMA_crossover', 'RSI_oversold', 'next_close'
]
target = 'target'

# Standardize features (recommended for LR)
X = ml_data[features]
y = ml_data[target]

scaler = RobustScaler()
X_scaled = scaler.fit_transform(X)

sns.countplot(x='target', data=ml_data)
plt.title("Class Balance: Next-Day Up/Down Distribution")
plt.xlabel("0 = Down, 1 = Up")
plt.ylabel("Count")
plt.show()

# # Sort by date (if multi-stock, by ticker as well)
# ml_data = ml_data.sort_values(['ticker', 'Date'])

# # Chronological split: 80% train, 20% test
# split_idx = int(0.8 * len(ml_data))
# X_train, X_test = X_scaled[:split_idx], X_scaled[split_idx:]
# y_train, y_test = y[:split_idx], y[split_idx:]

from sklearn.model_selection import TimeSeriesSplit

tscv = TimeSeriesSplit(n_splits=5)

# Use only the last fold for final testing
for train_index, test_index in tscv.split(X_scaled):
    pass  # this will give you the last split

X_train, X_test = X_scaled[train_index], X_scaled[test_index]
y_train, y_test = y.iloc[train_index], y.iloc[test_index]

# Hyperparameter tuning
from sklearn.model_selection import GridSearchCV

param_grid = {
    'max_depth': [5, 7, 10, 15],
    'min_samples_split': [2, 5, 10],
    'min_samples_leaf': [1, 2, 4],
    'criterion': ['gini', 'entropy']
}

# Decision Tree Classifier
dt_model = GridSearchCV(DecisionTreeClassifier(random_state=42), param_grid, cv=tscv, n_jobs=-1)
dt_model.fit(X_train, y_train)
dt_preds = dt_model.predict(X_test)

# Logistic Regression
lr_model = LogisticRegression(random_state=42, max_iter=1000)
lr_model.fit(X_train, y_train)
lr_preds = lr_model.predict(X_test)

# Performance
def print_metrics(model_name, y_true, y_pred):
    print(f"\n=== {model_name} ===")
    print("Accuracy:", accuracy_score(y_true, y_pred))
    print(classification_report(y_true, y_pred, target_names=['Down','Up']))

print_metrics("Decision Tree", y_test, dt_preds)
print_metrics("Logistic Regression", y_test, lr_preds)

# Decision Tree feature importances
importances = pd.Series(dt_model.best_index_, index=features)
importances = importances.sort_values(ascending=False)
print("\nTop Feature Importances (Decision Tree):")
print(importances)

plt.figure(figsize=(35,20))
corr = ml_data[[
    'Close', 'Volume', 'SMA20', 'SMA50', 'EMA20', 'EMA50',
    'RSI14', 'MACD', 'MACD_signal', 'MACD_hist',
    'SMA_crossover', 'RSI_oversold',
    'return_1d', 'volatility_5d', 'volatility_10d', 'volatility_20d',
    'volatility_30d', 'vol_ratio_5_20', 'vol_ratio_10_20', 'vol_rank_20',
    'vol_rank_50', 'return_lag_1', 'return_lag_2', 'return_lag_3',
    'return_lag_5', 'return_lag_10', 'rsi_lag_1', 'macd_lag_1', 'rsi_lag_2',
]].corr()
sns.heatmap(corr, annot=True, cmap='coolwarm', center=0)
plt.title("Correlation Heatmap of Features")
plt.show()

from sklearn.metrics import confusion_matrix
import seaborn as sns

# Calculate the confusion matrix
cm = confusion_matrix(y_test, lr_preds)

# Display the confusion matrix using a heatmap
plt.figure(figsize=(8, 6))
sns.heatmap(cm, annot=True, fmt='d', cmap='Blues', xticklabels=['Down', 'Up'], yticklabels=['Down', 'Up'])
plt.xlabel('Predicted')
plt.ylabel('Actual')
plt.title('Confusion Matrix for LR model')
plt.show()

print("\n=======Confusion Matrix========\n")
print(cm)

from sklearn.metrics import precision_recall_curve, average_precision_score

# Get predicted probabilities for the positive class
y_scores = lr_model.predict_proba(X_test)[:, 1]

# Calculate precision and recall for different thresholds
precision, recall, _ = precision_recall_curve(y_test, y_scores)

# Calculate the Average Precision (AP) score
average_precision = average_precision_score(y_test, y_scores)

# Plot the Precision-Recall curve
plt.figure(figsize=(8, 6))
plt.plot(recall, precision, color='red', lw=2, label='Precision-Recall curve (AP = %0.2f)' % average_precision)
plt.xlabel('Recall')
plt.ylabel('Precision')
plt.title('Precision-Recall Curve')
plt.ylim([0.0, 1.05])
plt.xlim([0.0, 1.0])
plt.legend(loc="lower left")
plt.tight_layout()
plt.show()

print(f"\nAverage Precision (AP) for Logistic Regression: {average_precision:.4f}")

from sklearn.metrics import roc_curve, auc

# Calculate ROC curve
fpr, tpr, thresholds = roc_curve(y_test, lr_model.predict_proba(X_test)[:,1])
roc_auc = auc(fpr, tpr)

# Plot ROC curve
plt.figure(figsize=(8, 6))
plt.plot(fpr, tpr, color='red', lw=2, label='ROC curve (area = %0.2f)' % roc_auc)
plt.plot([0, 1], [0, 1], color='navy', lw=2, linestyle='--')
plt.xlim([0.0, 1.0])
plt.ylim([0.0, 1.05])
plt.xlabel('False Positive Rate')
plt.ylabel('True Positive Rate')
plt.title('Receiver Operating Characteristic (ROC) Curve')
plt.legend(loc="lower right")
plt.show()

print(f"\nAUC for Logistic Regression: {roc_auc:.4f}")

from sklearn.metrics import f1_score, classification_report

# Calculate F1 score
f1 = f1_score(y_test, lr_preds)
print(f"\nF1 Score for Logistic Regression: {f1:.4f}")

# Print classification report
print("\nClassification Report for Logistic Regression:")
print(classification_report(y_test, lr_preds, target_names=['Down', 'Up']))

# Calculate training accuracy for Logistic Regression
lr_train_accuracy = lr_model.score(X_train, y_train)
print(f"\nLogistic Regression Training Accuracy: {lr_train_accuracy:.4f}")
print(f"Logistic Regression Test Accuracy: {accuracy_score(y_test, lr_preds):.4f}")

import pickle

# Save the Logistic Regression model
filename = 'logistic_regression_model.pkl'
pickle.dump(lr_model, open(filename, 'wb'))

print(f"Logistic Regression model saved to {filename}")

import pickle

# Load the saved Logistic Regression model
filename = 'logistic_regression_model.pkl'
loaded_model = pickle.load(open(filename, 'rb'))

print(f"Logistic Regression model loaded from {filename}")

# Test the loaded model
loaded_preds = loaded_model.predict(X_test)

# Evaluate the loaded model's performance
print("\n=== Loaded Logistic Regression Model Performance ===")
print("\n Accuracy:", accuracy_score(y_test, loaded_preds)," \n")
print(classification_report(y_test, loaded_preds, target_names=['Down','Up']))