|
from fastapi import FastAPI, UploadFile, File |
|
from transformers import AutoModelForCausalLM, AutoTokenizer |
|
import os |
|
|
|
app = FastAPI() |
|
|
|
|
|
hf_token = os.getenv("yoyo") |
|
if not hf_token: |
|
raise ValueError("HF_TOKEN n’est pas défini. Ajoute-le dans les secrets de Hugging Face Spaces.") |
|
|
|
|
|
model_name = "meta-llama/Llama-2-7b-chat-hf" |
|
tokenizer = AutoTokenizer.from_pretrained(model_name, use_auth_token=hf_token) |
|
model = AutoModelForCausalLM.from_pretrained(model_name, use_auth_token=hf_token) |
|
|
|
@app.get("/") |
|
async def root(): |
|
return {"message": "API avec Llama 2 sur Hugging Face Spaces"} |
|
|
|
|
|
@app.post("/summarization/text") |
|
async def summarize_text(file: UploadFile = File(...)): |
|
content = await file.read() |
|
text = content.decode("utf-8") |
|
prompt = f"Summarize this text in 3 short sentences: {text}" |
|
inputs = tokenizer(prompt, return_tensors="pt") |
|
outputs = model.generate(**inputs, max_length=100, num_return_sequences=1) |
|
summary = tokenizer.decode(outputs[0], skip_special_tokens=True) |
|
return {"summary": summary} |