Spaces:
Sleeping
Sleeping
| import asyncio | |
| import json | |
| import os | |
| import time | |
| import traceback | |
| import warnings | |
| from concurrent.futures import ThreadPoolExecutor | |
| from logging import getLogger | |
| from threading import Lock | |
| from typing import AsyncGenerator, Dict, List, Optional, Union | |
| import aiohttp | |
| import requests | |
| from ..schema import ModelStatusCode | |
| from ..utils import filter_suffix | |
| from .base_api import AsyncBaseAPILLM, BaseAPILLM | |
| warnings.simplefilter('default') | |
| OPENAI_API_BASE = 'https://api.openai.com/v1/chat/completions' | |
| class GPTAPI(BaseAPILLM): | |
| """Model wrapper around OpenAI's models. | |
| Args: | |
| model_type (str): The name of OpenAI's model. | |
| retry (int): Number of retires if the API call fails. Defaults to 2. | |
| key (str or List[str]): OpenAI key(s). In particular, when it | |
| is set to "ENV", the key will be fetched from the environment | |
| variable $OPENAI_API_KEY, as how openai defaults to be. If it's a | |
| list, the keys will be used in round-robin manner. Defaults to | |
| 'ENV'. | |
| org (str or List[str], optional): OpenAI organization(s). If not | |
| specified, OpenAI uses the default organization bound to each API | |
| key. If specified, the orgs will be posted with each request in | |
| round-robin manner. Defaults to None. | |
| meta_template (Dict, optional): The model's meta prompt | |
| template if needed, in case the requirement of injecting or | |
| wrapping of any meta instructions. | |
| api_base (str): The base url of OpenAI's API. Defaults to | |
| 'https://api.openai.com/v1/chat/completions'. | |
| gen_params: Default generation configuration which could be overridden | |
| on the fly of generation. | |
| """ | |
| is_api: bool = True | |
| def __init__( | |
| self, | |
| model_type: str = 'gpt-3.5-turbo', | |
| retry: int = 2, | |
| json_mode: bool = False, | |
| key: Union[str, List[str]] = 'ENV', | |
| org: Optional[Union[str, List[str]]] = None, | |
| meta_template: Optional[Dict] = [ | |
| dict(role='system', api_role='system'), | |
| dict(role='user', api_role='user'), | |
| dict(role='assistant', api_role='assistant'), | |
| dict(role='environment', api_role='system'), | |
| ], | |
| api_base: str = OPENAI_API_BASE, | |
| proxies: Optional[Dict] = None, | |
| **gen_params, | |
| ): | |
| if 'top_k' in gen_params: | |
| warnings.warn('`top_k` parameter is deprecated in OpenAI APIs.', DeprecationWarning) | |
| gen_params.pop('top_k') | |
| super().__init__(model_type=model_type, meta_template=meta_template, retry=retry, **gen_params) | |
| self.gen_params.pop('top_k') | |
| self.logger = getLogger(__name__) | |
| if isinstance(key, str): | |
| self.keys = [os.getenv('OPENAI_API_KEY') if key == 'ENV' else key] | |
| else: | |
| self.keys = key | |
| # record invalid keys and skip them when requesting API | |
| # - keys have insufficient_quota | |
| self.invalid_keys = set() | |
| self.key_ctr = 0 | |
| if isinstance(org, str): | |
| self.orgs = [org] | |
| else: | |
| self.orgs = org | |
| self.org_ctr = 0 | |
| self.url = api_base | |
| self.model_type = model_type | |
| self.proxies = proxies | |
| self.json_mode = json_mode | |
| def chat( | |
| self, | |
| inputs: Union[List[dict], List[List[dict]]], | |
| **gen_params, | |
| ) -> Union[str, List[str]]: | |
| """Generate responses given the contexts. | |
| Args: | |
| inputs (Union[List[dict], List[List[dict]]]): a list of messages | |
| or list of lists of messages | |
| gen_params: additional generation configuration | |
| Returns: | |
| Union[str, List[str]]: generated string(s) | |
| """ | |
| assert isinstance(inputs, list) | |
| if 'max_tokens' in gen_params: | |
| raise NotImplementedError('unsupported parameter: max_tokens') | |
| gen_params = {**self.gen_params, **gen_params} | |
| with ThreadPoolExecutor(max_workers=20) as executor: | |
| tasks = [ | |
| executor.submit(self._chat, messages, **gen_params) | |
| for messages in ([inputs] if isinstance(inputs[0], dict) else inputs) | |
| ] | |
| ret = [task.result() for task in tasks] | |
| return ret[0] if isinstance(inputs[0], dict) else ret | |
| def stream_chat( | |
| self, | |
| inputs: List[dict], | |
| **gen_params, | |
| ): | |
| """Generate responses given the contexts. | |
| Args: | |
| inputs (List[dict]): a list of messages | |
| gen_params: additional generation configuration | |
| Returns: | |
| str: generated string | |
| """ | |
| assert isinstance(inputs, list) | |
| if 'max_tokens' in gen_params: | |
| raise NotImplementedError('unsupported parameter: max_tokens') | |
| gen_params = self.update_gen_params(**gen_params) | |
| gen_params['stream'] = True | |
| resp = '' | |
| finished = False | |
| stop_words = gen_params.get('stop_words') | |
| if stop_words is None: | |
| stop_words = [] | |
| # mapping to role that openai supports | |
| messages = self.template_parser(inputs) | |
| for text in self._stream_chat(messages, **gen_params): | |
| resp += text | |
| if not resp: | |
| continue | |
| # remove stop_words | |
| for sw in stop_words: | |
| if sw in resp: | |
| resp = filter_suffix(resp, stop_words) | |
| finished = True | |
| break | |
| yield ModelStatusCode.STREAM_ING, resp, None | |
| if finished: | |
| break | |
| yield ModelStatusCode.END, resp, None | |
| def _chat(self, messages: List[dict], **gen_params) -> str: | |
| """Generate completion from a list of templates. | |
| Args: | |
| messages (List[dict]): a list of prompt dictionaries | |
| gen_params: additional generation configuration | |
| Returns: | |
| str: The generated string. | |
| """ | |
| assert isinstance(messages, list) | |
| messages = self.template_parser(messages) | |
| header, data = self.generate_request_data( | |
| model_type=self.model_type, messages=messages, gen_params=gen_params, json_mode=self.json_mode | |
| ) | |
| max_num_retries, errmsg = 0, '' | |
| while max_num_retries < self.retry: | |
| with Lock(): | |
| if len(self.invalid_keys) == len(self.keys): | |
| raise RuntimeError('All keys have insufficient quota.') | |
| # find the next valid key | |
| while True: | |
| self.key_ctr += 1 | |
| if self.key_ctr == len(self.keys): | |
| self.key_ctr = 0 | |
| if self.keys[self.key_ctr] not in self.invalid_keys: | |
| break | |
| key = self.keys[self.key_ctr] | |
| header['Authorization'] = f'Bearer {key}' | |
| if self.orgs: | |
| with Lock(): | |
| self.org_ctr += 1 | |
| if self.org_ctr == len(self.orgs): | |
| self.org_ctr = 0 | |
| header['OpenAI-Organization'] = self.orgs[self.org_ctr] | |
| response = dict() | |
| try: | |
| raw_response = requests.post(self.url, headers=header, data=json.dumps(data), proxies=self.proxies) | |
| response = raw_response.json() | |
| return response['choices'][0]['message']['content'].strip() | |
| except requests.ConnectionError: | |
| errmsg = 'Got connection error ' + str(traceback.format_exc()) | |
| self.logger.error(errmsg) | |
| continue | |
| except requests.JSONDecodeError: | |
| errmsg = 'JsonDecode error, got ' + str(raw_response.content) | |
| self.logger.error(errmsg) | |
| continue | |
| except KeyError: | |
| if 'error' in response: | |
| if response['error']['code'] == 'rate_limit_exceeded': | |
| time.sleep(1) | |
| continue | |
| elif response['error']['code'] == 'insufficient_quota': | |
| self.invalid_keys.add(key) | |
| self.logger.warn(f'insufficient_quota key: {key}') | |
| continue | |
| errmsg = 'Find error message in response: ' + str(response['error']) | |
| self.logger.error(errmsg) | |
| except Exception as error: | |
| errmsg = str(error) + '\n' + str(traceback.format_exc()) | |
| self.logger.error(errmsg) | |
| max_num_retries += 1 | |
| raise RuntimeError( | |
| 'Calling OpenAI failed after retrying for ' | |
| f'{max_num_retries} times. Check the logs for ' | |
| f'details. errmsg: {errmsg}' | |
| ) | |
| def _stream_chat(self, messages: List[dict], **gen_params) -> str: | |
| """Generate completion from a list of templates. | |
| Args: | |
| messages (List[dict]): a list of prompt dictionaries | |
| gen_params: additional generation configuration | |
| Returns: | |
| str: The generated string. | |
| """ | |
| def streaming(raw_response): | |
| for chunk in raw_response.iter_lines(chunk_size=8192, decode_unicode=False, delimiter=b'\n'): | |
| if chunk: | |
| decoded = chunk.decode('utf-8') | |
| if decoded.startswith('data: [DONE]'): | |
| return | |
| if decoded[:5] == 'data:': | |
| decoded = decoded[5:] | |
| if decoded[0] == ' ': | |
| decoded = decoded[1:] | |
| else: | |
| print(decoded) | |
| continue | |
| try: | |
| response = json.loads(decoded) | |
| if 'code' in response and response['code'] == -20003: | |
| # Context exceeds maximum length | |
| yield '' | |
| return | |
| choice = response['choices'][0] | |
| if choice['finish_reason'] == 'stop': | |
| return | |
| yield choice['delta'].get('content', '') | |
| except Exception as exc: | |
| msg = f'response {decoded} lead to exception of {str(exc)}' | |
| self.logger.error(msg) | |
| raise Exception(msg) from exc | |
| assert isinstance(messages, list) | |
| header, data = self.generate_request_data( | |
| model_type=self.model_type, messages=messages, gen_params=gen_params, json_mode=self.json_mode | |
| ) | |
| max_num_retries, errmsg = 0, '' | |
| while max_num_retries < self.retry: | |
| if len(self.invalid_keys) == len(self.keys): | |
| raise RuntimeError('All keys have insufficient quota.') | |
| # find the next valid key | |
| while True: | |
| self.key_ctr += 1 | |
| if self.key_ctr == len(self.keys): | |
| self.key_ctr = 0 | |
| if self.keys[self.key_ctr] not in self.invalid_keys: | |
| break | |
| key = self.keys[self.key_ctr] | |
| header['Authorization'] = f'Bearer {key}' | |
| if self.orgs: | |
| self.org_ctr += 1 | |
| if self.org_ctr == len(self.orgs): | |
| self.org_ctr = 0 | |
| header['OpenAI-Organization'] = self.orgs[self.org_ctr] | |
| response = dict() | |
| try: | |
| raw_response = requests.post(self.url, headers=header, data=json.dumps(data), proxies=self.proxies, stream=True) | |
| return streaming(raw_response) | |
| except requests.ConnectionError: | |
| errmsg = 'Got connection error ' + str(traceback.format_exc()) | |
| self.logger.error(errmsg) | |
| continue | |
| except requests.JSONDecodeError: | |
| errmsg = 'JsonDecode error, got ' + str(raw_response.content) | |
| self.logger.error(errmsg) | |
| continue | |
| except KeyError: | |
| if 'error' in response: | |
| if response['error']['code'] == 'rate_limit_exceeded': | |
| time.sleep(1) | |
| continue | |
| elif response['error']['code'] == 'insufficient_quota': | |
| self.invalid_keys.add(key) | |
| self.logger.warn(f'insufficient_quota key: {key}') | |
| continue | |
| errmsg = 'Find error message in response: ' + str(response['error']) | |
| self.logger.error(errmsg) | |
| except Exception as error: | |
| errmsg = str(error) + '\n' + str(traceback.format_exc()) | |
| self.logger.error(errmsg) | |
| max_num_retries += 1 | |
| raise RuntimeError( | |
| 'Calling OpenAI failed after retrying for ' | |
| f'{max_num_retries} times. Check the logs for ' | |
| f'details. errmsg: {errmsg}' | |
| ) | |
| def generate_request_data(self, model_type, messages, gen_params, json_mode=False): | |
| """ | |
| Generates the request data for different model types. | |
| Args: | |
| model_type (str): The type of the model (e.g., 'gpt', 'internlm', 'qwen'). | |
| messages (list): The list of messages to be sent to the model. | |
| gen_params (dict): The generation parameters. | |
| json_mode (bool): Flag to determine if the response format should be JSON. | |
| Returns: | |
| tuple: A tuple containing the header and the request data. | |
| """ | |
| # Copy generation parameters to avoid modifying the original dictionary | |
| gen_params = gen_params.copy() | |
| # Hold out 100 tokens due to potential errors in token calculation | |
| max_tokens = min(gen_params.pop('max_new_tokens'), 4096) | |
| if max_tokens <= 0: | |
| return '', '' | |
| # Initialize the header | |
| header = { | |
| 'content-type': 'application/json', | |
| } | |
| # Common parameters processing | |
| gen_params['max_tokens'] = max_tokens | |
| if 'stop_words' in gen_params: | |
| gen_params['stop'] = gen_params.pop('stop_words') | |
| if 'repetition_penalty' in gen_params: | |
| gen_params['frequency_penalty'] = gen_params.pop('repetition_penalty') | |
| # Model-specific processing | |
| data = {} | |
| if model_type.lower().startswith('gpt') or model_type.lower().startswith('qwen'): | |
| if 'top_k' in gen_params: | |
| warnings.warn('`top_k` parameter is deprecated in OpenAI APIs.', DeprecationWarning) | |
| gen_params.pop('top_k') | |
| gen_params.pop('skip_special_tokens', None) | |
| gen_params.pop('session_id', None) | |
| data = {'model': model_type, 'messages': messages, 'n': 1, **gen_params} | |
| if json_mode: | |
| data['response_format'] = {'type': 'json_object'} | |
| elif model_type.lower().startswith('internlm'): | |
| data = {'model': model_type, 'messages': messages, 'n': 1, **gen_params} | |
| if json_mode: | |
| data['response_format'] = {'type': 'json_object'} | |
| else: | |
| raise NotImplementedError(f'Model type {model_type} is not supported') | |
| return header, data | |
| def tokenize(self, prompt: str) -> list: | |
| """Tokenize the input prompt. | |
| Args: | |
| prompt (str): Input string. | |
| Returns: | |
| list: token ids | |
| """ | |
| import tiktoken | |
| self.tiktoken = tiktoken | |
| enc = self.tiktoken.encoding_for_model(self.model_type) | |
| return enc.encode(prompt) | |
| class AsyncGPTAPI(AsyncBaseAPILLM): | |
| """Model wrapper around OpenAI's models. | |
| Args: | |
| model_type (str): The name of OpenAI's model. | |
| retry (int): Number of retires if the API call fails. Defaults to 2. | |
| key (str or List[str]): OpenAI key(s). In particular, when it | |
| is set to "ENV", the key will be fetched from the environment | |
| variable $OPENAI_API_KEY, as how openai defaults to be. If it's a | |
| list, the keys will be used in round-robin manner. Defaults to | |
| 'ENV'. | |
| org (str or List[str], optional): OpenAI organization(s). If not | |
| specified, OpenAI uses the default organization bound to each API | |
| key. If specified, the orgs will be posted with each request in | |
| round-robin manner. Defaults to None. | |
| meta_template (Dict, optional): The model's meta prompt | |
| template if needed, in case the requirement of injecting or | |
| wrapping of any meta instructions. | |
| api_base (str): The base url of OpenAI's API. Defaults to | |
| 'https://api.openai.com/v1/chat/completions'. | |
| gen_params: Default generation configuration which could be overridden | |
| on the fly of generation. | |
| """ | |
| is_api: bool = True | |
| def __init__( | |
| self, | |
| model_type: str = 'gpt-3.5-turbo', | |
| retry: int = 2, | |
| json_mode: bool = False, | |
| key: Union[str, List[str]] = 'ENV', | |
| org: Optional[Union[str, List[str]]] = None, | |
| meta_template: Optional[Dict] = [ | |
| dict(role='system', api_role='system'), | |
| dict(role='user', api_role='user'), | |
| dict(role='assistant', api_role='assistant'), | |
| dict(role='environment', api_role='system'), | |
| ], | |
| api_base: str = OPENAI_API_BASE, | |
| proxies: Optional[Dict] = None, | |
| **gen_params, | |
| ): | |
| if 'top_k' in gen_params: | |
| warnings.warn('`top_k` parameter is deprecated in OpenAI APIs.', DeprecationWarning) | |
| gen_params.pop('top_k') | |
| super().__init__(model_type=model_type, meta_template=meta_template, retry=retry, **gen_params) | |
| self.gen_params.pop('top_k') | |
| self.logger = getLogger(__name__) | |
| if isinstance(key, str): | |
| self.keys = [os.getenv('OPENAI_API_KEY') if key == 'ENV' else key] | |
| else: | |
| self.keys = key | |
| # record invalid keys and skip them when requesting API | |
| # - keys have insufficient_quota | |
| self.invalid_keys = set() | |
| self.key_ctr = 0 | |
| if isinstance(org, str): | |
| self.orgs = [org] | |
| else: | |
| self.orgs = org | |
| self.org_ctr = 0 | |
| self.url = api_base | |
| self.model_type = model_type | |
| self.proxies = proxies or {} | |
| self.json_mode = json_mode | |
| async def chat( | |
| self, | |
| inputs: Union[List[dict], List[List[dict]]], | |
| session_ids: Union[int, List[int]] = None, | |
| **gen_params, | |
| ) -> Union[str, List[str]]: | |
| """Generate responses given the contexts. | |
| Args: | |
| inputs (Union[List[dict], List[List[dict]]]): a list of messages | |
| or list of lists of messages | |
| gen_params: additional generation configuration | |
| Returns: | |
| Union[str, List[str]]: generated string(s) | |
| """ | |
| assert isinstance(inputs, list) | |
| if 'max_tokens' in gen_params: | |
| raise NotImplementedError('unsupported parameter: max_tokens') | |
| gen_params = {**self.gen_params, **gen_params} | |
| tasks = [ | |
| self._chat(messages, **gen_params) for messages in ([inputs] if isinstance(inputs[0], dict) else inputs) | |
| ] | |
| ret = await asyncio.gather(*tasks) | |
| return ret[0] if isinstance(inputs[0], dict) else ret | |
| async def stream_chat( | |
| self, | |
| inputs: List[dict], | |
| **gen_params, | |
| ): | |
| """Generate responses given the contexts. | |
| Args: | |
| inputs (List[dict]): a list of messages | |
| gen_params: additional generation configuration | |
| Returns: | |
| str: generated string | |
| """ | |
| assert isinstance(inputs, list) | |
| if 'max_tokens' in gen_params: | |
| raise NotImplementedError('unsupported parameter: max_tokens') | |
| gen_params = self.update_gen_params(**gen_params) | |
| gen_params['stream'] = True | |
| resp = '' | |
| finished = False | |
| stop_words = gen_params.get('stop_words') | |
| if stop_words is None: | |
| stop_words = [] | |
| # mapping to role that openai supports | |
| messages = self.template_parser(inputs) | |
| async for text in self._stream_chat(messages, **gen_params): | |
| resp += text | |
| if not resp: | |
| continue | |
| # remove stop_words | |
| for sw in stop_words: | |
| if sw in resp: | |
| resp = filter_suffix(resp, stop_words) | |
| finished = True | |
| break | |
| yield ModelStatusCode.STREAM_ING, resp, None | |
| if finished: | |
| break | |
| yield ModelStatusCode.END, resp, None | |
| async def _chat(self, messages: List[dict], **gen_params) -> str: | |
| """Generate completion from a list of templates. | |
| Args: | |
| messages (List[dict]): a list of prompt dictionaries | |
| gen_params: additional generation configuration | |
| Returns: | |
| str: The generated string. | |
| """ | |
| assert isinstance(messages, list) | |
| messages = self.template_parser(messages) | |
| header, data = self.generate_request_data( | |
| model_type=self.model_type, messages=messages, gen_params=gen_params, json_mode=self.json_mode | |
| ) | |
| max_num_retries, errmsg = 0, '' | |
| while max_num_retries < self.retry: | |
| if len(self.invalid_keys) == len(self.keys): | |
| raise RuntimeError('All keys have insufficient quota.') | |
| # find the next valid key | |
| while True: | |
| self.key_ctr += 1 | |
| if self.key_ctr == len(self.keys): | |
| self.key_ctr = 0 | |
| if self.keys[self.key_ctr] not in self.invalid_keys: | |
| break | |
| key = self.keys[self.key_ctr] | |
| header['Authorization'] = f'Bearer {key}' | |
| if self.orgs: | |
| self.org_ctr += 1 | |
| if self.org_ctr == len(self.orgs): | |
| self.org_ctr = 0 | |
| header['OpenAI-Organization'] = self.orgs[self.org_ctr] | |
| response = dict() | |
| try: | |
| async with aiohttp.ClientSession() as session: | |
| async with session.post( | |
| self.url, headers=header, json=data, proxy=self.proxies.get('https', self.proxies.get('http')) | |
| ) as resp: | |
| response = await resp.json() | |
| return response['choices'][0]['message']['content'].strip() | |
| except aiohttp.ClientConnectionError: | |
| errmsg = 'Got connection error ' + str(traceback.format_exc()) | |
| self.logger.error(errmsg) | |
| continue | |
| except aiohttp.ClientResponseError as e: | |
| errmsg = 'Response error, got ' + str(e) | |
| self.logger.error(errmsg) | |
| continue | |
| except json.JSONDecodeError: | |
| errmsg = 'JsonDecode error, got ' + (await resp.text(errors='replace')) | |
| self.logger.error(errmsg) | |
| continue | |
| except KeyError: | |
| if 'error' in response: | |
| if response['error']['code'] == 'rate_limit_exceeded': | |
| time.sleep(1) | |
| continue | |
| elif response['error']['code'] == 'insufficient_quota': | |
| self.invalid_keys.add(key) | |
| self.logger.warn(f'insufficient_quota key: {key}') | |
| continue | |
| errmsg = 'Find error message in response: ' + str(response['error']) | |
| self.logger.error(errmsg) | |
| except Exception as error: | |
| errmsg = str(error) + '\n' + str(traceback.format_exc()) | |
| self.logger.error(errmsg) | |
| max_num_retries += 1 | |
| raise RuntimeError( | |
| 'Calling OpenAI failed after retrying for ' | |
| f'{max_num_retries} times. Check the logs for ' | |
| f'details. errmsg: {errmsg}' | |
| ) | |
| async def _stream_chat(self, messages: List[dict], **gen_params) -> AsyncGenerator[str, None]: | |
| """Generate completion from a list of templates. | |
| Args: | |
| messages (List[dict]): a list of prompt dictionaries | |
| gen_params: additional generation configuration | |
| Returns: | |
| str: The generated string. | |
| """ | |
| async def streaming(raw_response): | |
| async for chunk in raw_response.content: | |
| if chunk: | |
| decoded = chunk.decode('utf-8') | |
| if decoded.startswith('data: [DONE]'): | |
| return | |
| if decoded[:5] == 'data:': | |
| decoded = decoded[5:] | |
| if decoded[0] == ' ': | |
| decoded = decoded[1:] | |
| else: | |
| print(decoded) | |
| continue | |
| try: | |
| response = json.loads(decoded) | |
| if 'code' in response and response['code'] == -20003: | |
| # Context exceeds maximum length | |
| yield '' | |
| return | |
| choice = response['choices'][0] | |
| if choice['finish_reason'] == 'stop': | |
| return | |
| yield choice['delta'].get('content', '') | |
| except Exception as exc: | |
| msg = f'response {decoded} lead to exception of {str(exc)}' | |
| self.logger.error(msg) | |
| raise Exception(msg) from exc | |
| assert isinstance(messages, list) | |
| header, data = self.generate_request_data( | |
| model_type=self.model_type, messages=messages, gen_params=gen_params, json_mode=self.json_mode | |
| ) | |
| max_num_retries, errmsg = 0, '' | |
| while max_num_retries < self.retry: | |
| if len(self.invalid_keys) == len(self.keys): | |
| raise RuntimeError('All keys have insufficient quota.') | |
| # find the next valid key | |
| while True: | |
| self.key_ctr += 1 | |
| if self.key_ctr == len(self.keys): | |
| self.key_ctr = 0 | |
| if self.keys[self.key_ctr] not in self.invalid_keys: | |
| break | |
| key = self.keys[self.key_ctr] | |
| header['Authorization'] = f'Bearer {key}' | |
| if self.orgs: | |
| self.org_ctr += 1 | |
| if self.org_ctr == len(self.orgs): | |
| self.org_ctr = 0 | |
| header['OpenAI-Organization'] = self.orgs[self.org_ctr] | |
| response = dict() | |
| try: | |
| async with aiohttp.ClientSession() as session: | |
| async with session.post( | |
| self.url, headers=header, json=data, proxy=self.proxies.get('https', self.proxies.get('http')) | |
| ) as raw_response: | |
| async for msg in streaming(raw_response): | |
| yield msg | |
| return | |
| except aiohttp.ClientConnectionError: | |
| errmsg = 'Got connection error ' + str(traceback.format_exc()) | |
| self.logger.error(errmsg) | |
| continue | |
| except aiohttp.ClientResponseError as e: | |
| errmsg = 'Response error, got ' + str(e) | |
| self.logger.error(errmsg) | |
| continue | |
| except KeyError: | |
| if 'error' in response: | |
| if response['error']['code'] == 'rate_limit_exceeded': | |
| time.sleep(1) | |
| continue | |
| elif response['error']['code'] == 'insufficient_quota': | |
| self.invalid_keys.add(key) | |
| self.logger.warn(f'insufficient_quota key: {key}') | |
| continue | |
| errmsg = 'Find error message in response: ' + str(response['error']) | |
| self.logger.error(errmsg) | |
| except Exception as error: | |
| errmsg = str(error) + '\n' + str(traceback.format_exc()) | |
| self.logger.error(errmsg) | |
| max_num_retries += 1 | |
| raise RuntimeError( | |
| 'Calling OpenAI failed after retrying for ' | |
| f'{max_num_retries} times. Check the logs for ' | |
| f'details. errmsg: {errmsg}' | |
| ) | |
| def generate_request_data(self, model_type, messages, gen_params, json_mode=False): | |
| """ | |
| Generates the request data for different model types. | |
| Args: | |
| model_type (str): The type of the model (e.g., 'gpt', 'internlm', 'qwen'). | |
| messages (list): The list of messages to be sent to the model. | |
| gen_params (dict): The generation parameters. | |
| json_mode (bool): Flag to determine if the response format should be JSON. | |
| Returns: | |
| tuple: A tuple containing the header and the request data. | |
| """ | |
| # Copy generation parameters to avoid modifying the original dictionary | |
| gen_params = gen_params.copy() | |
| # Hold out 100 tokens due to potential errors in token calculation | |
| max_tokens = min(gen_params.pop('max_new_tokens'), 4096) | |
| if max_tokens <= 0: | |
| return '', '' | |
| # Initialize the header | |
| header = { | |
| 'content-type': 'application/json', | |
| } | |
| # Common parameters processing | |
| gen_params['max_tokens'] = max_tokens | |
| if 'stop_words' in gen_params: | |
| gen_params['stop'] = gen_params.pop('stop_words') | |
| if 'repetition_penalty' in gen_params: | |
| gen_params['frequency_penalty'] = gen_params.pop('repetition_penalty') | |
| # Model-specific processing | |
| data = {} | |
| if model_type.lower().startswith('gpt') or model_type.lower().startswith('qwen'): | |
| if 'top_k' in gen_params: | |
| warnings.warn('`top_k` parameter is deprecated in OpenAI APIs.', DeprecationWarning) | |
| gen_params.pop('top_k') | |
| gen_params.pop('skip_special_tokens', None) | |
| gen_params.pop('session_id', None) | |
| data = {'model': model_type, 'messages': messages, 'n': 1, **gen_params} | |
| if json_mode: | |
| data['response_format'] = {'type': 'json_object'} | |
| elif model_type.lower().startswith('internlm'): | |
| data = {'model': model_type, 'messages': messages, 'n': 1, **gen_params} | |
| if json_mode: | |
| data['response_format'] = {'type': 'json_object'} | |
| elif model_type.lower().startswith('o1'): | |
| data = {'model': model_type, 'messages': messages, 'n': 1} | |
| else: | |
| raise NotImplementedError(f'Model type {model_type} is not supported') | |
| return header, data | |
| def tokenize(self, prompt: str) -> list: | |
| """Tokenize the input prompt. | |
| Args: | |
| prompt (str): Input string. | |
| Returns: | |
| list: token ids | |
| """ | |
| import tiktoken | |
| self.tiktoken = tiktoken | |
| enc = self.tiktoken.encoding_for_model(self.model_type) | |
| return enc.encode(prompt) | |